Statistics Toolbox

For Use with MATLAB ${ }^{\circ}$

Visualization

Programming

The
MATH
WORKS
Inc.
User's Guide

How to Contact The MathWorks:

508-647-7000	Phone
508-647-7001	Fax
The MathWorks, Inc.	Mail
3 Apple Hill Drive Natick, MA 01760-2098	

ht t p: / / www. mat hwor ks. com
ftp. mat hwor ks. com
comp. soft-sys. matlab

Web
 Anonymous FTP server Newsgroup

support @mat hworks.com suggest @mat hworks.com bugs@mat hworks.com doc@mat hworks. com subscri be@mat hworks.com

Technical support

Product enhancement suggestions
Bug reports
Documentation error reports
Subscribing user registration
ser vi ce@mat hworks.com
i nf o@rat hworks.com
Order status, license renewals, passcodes
Sales, pricing, and general information

Statistics Tool box User's Guide

© COPYRIGHT 1993-2000 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by or for the federal government of the United States. By accepting delivery of the Program, the government hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part 252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain to the government's use and discl osure of the Program and Documentation, and shall supersede any conflicting contractual terms or conditions. If this license fails to meet the government's minimum needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to MathWorks.
MATLAB, Simulink, Stateflow, H andle Graphics, and Real-Time Workshop are registered trademarks, and Target Language Compiler is a trademark of The MathWorks, Inc.
Other product or brand names are trademarks or registered trademarks of their respective holders.
Printing History: September 1993 First printing Version 1
March 1996 Second printing Version 2
J anuary 1997 Third printing For MATLAB 5
May 1997 Revised for MATLAB 5.1 (online version)
J anuary 1998 Revised for MATLAB 5.2 (online version)
J anuary 1999 Revised for Version 2.1.2 (Release 11) (online only)
November 2000 Fourth printing Revised for Version 3 (Release 12)

Preface

Overview xii
What Is the Statistics Toolbox? xiii
How to Use This Guide xiv
Related Products List xv
Mathematical Notation xvii
Typographical Conventions xviii
Tutorial
1
I ntroduction 1-2
Primary Topic Areas 1-2
Probability Distributions 1-5
Overview of the Functions 1-6
Overview of the Distributions 1-12
Descriptive Statistics 1-43
Measures of Central Tendency (Location) 1-43
Measures of Dispersion 1-45
Functions for Data with Missing Values (NaNs) 1-46
Function for Grouped Data 1-47
Percentiles and Graphical Descriptions 1-49
The Bootstrap 1-50
Cluster Analysis 1-53
Terminology and Basic Procedure 1-53
Finding the Similarities Between Objects 1-54
Defining the Links Between Objects 1-56
Evaluating Cluster Formation 1-59
Creating Clusters 1-64
Linear Models 1-68
One-Way Analysis of Variance (ANOVA) 1-69
Two-Way Analysis of Variance (ANOVA) 1-73
N-Way Analysis of Variance 1-76
Multiple Linear Regression 1-82
Quadratic Response Surface Models 1-86
Stepwise Regression 1-88
Generalized Linear M odels 1-91
Robust and Nonparametric Methods 1-95
Nonlinear Regression Models 1-100
Example: Nonlinear Modeling 1-100
Hypothesis Tests 1-105
Hypothesis Test Terminology 1-105
Hypothesis Test Assumptions 1-106
Example: Hypothesis Testing 1-107
Available Hypothesis Tests 1-111
Multivariate Statistics 1-112
Principal Components Analysis 1-112
Multivariate Analysis of Variance (MANOVA) 1-122
Statistical Plots 1-128
Box Plots 1-128
Distribution Plots 1-129
Scatter Plots 1-135
Statistical Process Control (SPC) 1-138
Control Charts 1-138
Capability Studies 1-141
Design of Experiments (DOE) 1-143
Full Factorial Designs 1-144
Fractional Factorial Designs 1-145
D-Optimal Designs 1-147
Demos 1-153
The disttool Demo 1-154
The polytool Demo 1-156
The aoctool Demo 1-161
The randtool Demo 1-169
The rsmdemo Demo 1-170
The glmdemo Demo 1-172
The robustdemo Demo 1-172
Selected Bibliography 1-175
Reference
2
Function Category List 2-3
anoval 2-17
anova2 2-23
anovan 2-27
aoctool 2-33
barttest 2-36
betacdf 2-37
betafit 2-38
betainv 2-40
betalike 2-41
betapdf 2-42
betarnd 2-43
betastat 2-44
binocdf 2-45
binofit 2-46
binoinv 2-47
binopdf 2-48
binornd 2-49
binostat 2-50
bootstrp 2-51
boxplot 2-54
capable 2-56
capaplot 2-58
caseread 2-60
casewrite 2-61
cdf 2-62
cdfplot 2-63
chi2cdf 2-65
chi2inv 2-66
chi2pdf 2-67
chi2rnd 2-68
chi2stat 2-69
classify 2-70
cluster 2-71
clusterdata 2-73
combnk 2-75
cophenet 2-76
cordexch 2-78
corrcoef 2-79
cov 2-80
crosstab 2-81
daugment 2-83
dcovary 2-84
dendrogram 2-85
disttool 2-87
dummyvar 2-88
errorbar 2-89
ewmaplot 2-90
expcdf 2-92
expfit 2-93
expinv 2-94
exppdf 2-95
exprnd 2-96
expstat 2-97
fcdf 2-98
ff2n 2-99
finv 2-100
fpdf 2-101
fracfact 2-102
friedman 2-106
frnd 2-110
fstat 2-111
fsurfht 2-112
fullfact 2-114
gamcdf 2-115
gamfit 2-116
gaminv 2-117
gamlike 2-118
gampdf 2-119
gamrnd 2-120
gamstat 2-121
geocdf 2-122
geoinv 2-123
geomean 2-124
geopdf 2-125
geornd 2-126
geostat 2-127
gline 2-128
glmdemo 2-129
glmfit 2-130
glmval 2-135
gname 2-137
gplotmatrix 2-139
grpstats 2-142
gscatter 2-143
harmmean 2-145
hist 2-146
histfit 2-147
hougen 2-148
hygecdf 2-149
hygeinv 2-150
hygepdf 2-151
hygernd 2-152
hygestat 2-153
icdf 2-154
inconsistent 2-155
iqr 2-157
jbtest 2-158
kruskalwallis 2-160
kstest 2-164
kstest2 2-169
kurtosis 2-172
leverage 2-174
lillietest 2-175
linkage 2-178
logncdf 2-181
logninv 2-182
lognpdf 2-184
lognrnd 2-185
lognstat 2-186
Isline 2-187
mad 2-188
mahal 2-189
manoval 2-190
manovacluster 2-194
mean 2-196
median 2-197
mle 2-198
moment 2-199
multcompare 2-200
mvnrnd 2-207
mvtrnd 2-208
nanmax 2-209
nanmean 2-210
nanmedian 2-211
nanmin 2-212
nanstd 2-213
nansum 2-214
nbincdf 2-215
nbininv 2-216
nbinpdf 2-217
nbinrnd 2-218
nbinstat 2-219
ncfcdf 2-220
ncfinv 2-222
ncfpdf 2-223
ncfrnd 2-224
ncfstat 2-225
nctcdf 2-226
nctinv 2-227
nctpdf 2-228
nctrnd 2-229
nctstat 2-230
ncx2cdf 2-231
ncx2inv 2-233
ncx2pdf 2-234
ncx2rnd 2-235
ncx2stat 2-236
nlinfit 2-237
nlintool 2-238
nlparci 2-239
nlpredci 2-240
normcdf 2-242
normfit 2-243
norminv 2-244
normpdf 2-245
normplot 2-246
normrnd 2-248
normspec 2-249
normstat 2-250
pareto 2-251
pcacov 2-252
pcares 2-253
pdf 2-254
pdist 2-255
perms 2-258
poisscdf 2-259
poissfit 2-261
poissinv 2-262
poisspdf 2-263
poissrnd 2-264
poisstat 2-265
polyconf 2-266
polyfit 2-267
polytool 2-268
polyval 2-269
prctile 2-270
princomp 2-271
qqplot 2-272
random 2-274
randtool 2-275
range 2-276
ranksum 2-277
raylcdf 2-278
raylinv 2-279
raylpdf 2-280
raylrnd 2-281
raylstat 2-282
rcoplot 2-283
refcurve 2-284
refline 2-285
regress 2-286
regstats 2-288
ridge 2-290
robustdemo 2-292
robustfit 2-293
rowexch 2-297
rsmdemo 2-298
rstool 2-299
schart 2-300
signrank 2-302
signtest 2-304
skewness 2-306
squareform 2-308
std 2-309
stepwise 2-310
surfht 2-311
tabulate 2-312
tblread 2-313
tblwrite 2-315
tcdf 2-316
tdfread 2-317
tinv 2-319
tpdf 2-320
trimmean 2-321
trnd 2-322
tstat 2-323
ttest 2-324
ttest2 2-326
unidcdf 2-328
unidinv 2-329
unidpdf 2-330
unidrnd 2-331
unidstat 2-332
unifcdf 2-333
unifinv 2-334
unifit 2-335
unifpdf 2-336
unifrnd 2-337
unifstat 2-338
var 2-339
weibcdf 2-341
weibfit 2-342
weibinv 2-343
weiblike 2-344
weibpdf 2-345
weibplot 2-346
weibrnd 2-347
weibstat 2-348
x2fx 2-349
xbarplot 2-350
zscore 2-353
ztest 2-354

Preface

Overview xii
What Is the Statistics Toolbox? xiii
How to Use This Guide xiv
Related Products List XV
Mathematical Notation xvii
Typographical Conventions xviii

Overview

This chapter introduces the Statistics Toolbox, and explains how to use the documentation. It contains the following sections:

- "What Is the Statistics Tool box?"
- "How to Use This Guide"
- "Related Products List"
- "Mathematical Notation"
- "Typographical Conventions"

What Is the Statistics Toolbox?

The Statistics Tool box is a collection of tools built on the MATLAB ${ }^{\circledR}$ numeric computing environment. The tool box supports a wide range of common statistical tasks, from random number generation, to curve fitting, to design of experiments and statistical process control. The tool box provides two categories of tools:

- Building-block probability and statistics functions
- Graphical, interactive tools

The first category of tools is made up of functions that you can call from the command line or from your own applications. Many of these functions are MATLAB M-files, series of MATLAB statements that implement specialized statistics algorithms. Y ou can view theMATLAB codefor thesefunctions using the statement
type function_name
You can change the way any tool box function works by copying and renaming the M-file, then modifying your copy. You can also extend the tool box by adding your own M-files.

Secondly, the toolbox provides a number of interactive tools that let you access many of the functions through a graphical user interface (GUI). Together, the GUI-based tools provide an environment for polynomial fitting and prediction, as well as probability function exploration.

How to Use This Guide

If you are a new user begin with Chapter 1, "Tutorial." This chapter introduces the MATLAB statistics environment through the tool box functions. It describes the functions with regard to particular areas of interest, such as probability distributions, linear and nonlinear models, principal components analysis, design of experiments, statistical process control, and descriptive statistics.

All toolbox users should use Chapter 2, "Reference," for information about specific tools. For functions, reference descriptions include a synopsis of the function's syntax, as well as a complete explanation of options and operation. Many reference descriptions also include examples, a description of the function's algorithm, and references to additional reading material.

Use this guide in conjunction with the software to learn about the powerful features that MATLAB provides. Each chapter provides numerous examples that apply the tool box to representative statistical tasks.

The random number generation functions for various probability distributions are based on all the primitive functions, r andn and r and. There are many examples that start by generating data using random numbers. To duplicate the results in these examples, first execute the commands below.

```
seed = 931316785;
rand('seed', seed);
randn('seed', seed);
```

You might want to save these commands in an M-file script called init.m Then, instead of three separate commands, you need only type i ni t.

Related Products List

The MathWorks provides several products that are especially relevant to the kinds of tasks you can perform with the Statistics Tool box.

For more information about any of these products, see either:

- The online documentation for that product if it is installed or if you are reading the documentation from the CD
- TheM athWorks Web site, at ht t p: / / www. nat hwor ks. com seethe "products" section

Note The tool boxes listed below all include functions that extend MATLAB's capabilities. The blocksets all include blocks that extend Simulink's capabilities.

Product	Description
Data Acquisition Tool box	MATLAB functions for direct access to live, measured data from MATLAB
Database Toolbox	Tool for connecting to, and interacting with, most ODBC/J DBC databases from within MATLAB
Financial Time Series Toolbox	Tool for analyzing time series data in the financial markets
GARCH Tool box	MATLAB functions for univariate Generalized AutoregressiveConditional Heteroskedasticity (GARCH) volatility modeling
Image Processing	Complete suite of digital image processing and analysis tools for MATLAB
Toolbox	Tool for analyzing and displaying geographically based information from within MATLAB
Mapping Tool box	

Product	Description
Neural Network Tool box	Comprehensive environment for neural network research, design, and simulation within MATLAB
Optimization Tool box	Tool for general and Iarge-scale optimization of nonlinear problems, as well as for linear programming, quadratic programming, nonlinear least squares, and solving nonlinear equations
Signal Processing Tool box	Tool for algorithm development, signal and linear system analysis, and time-series data modeling
System I dentification	Tool for building accurate, simplified models of complex systems from noisy time-series data

Mathematical Notation

This manual and the Statistics Tool box functions use the following mathematical notation conventions.

β	Parameters in a linear model.
$E(x)$	Expected value of $x . E(x)=\int t f(t) d t$
$f(x \mid a, b)$	Probability density function. x is the independent variable; a and b are fixed parameters.
$F(x \mid a, b)$	Cumulative distribution function.
$I([a, b])$ or	Indicator function. In this example the function takes the value 1 on the closed interval from a to b and is 0 elsewhere.
$I_{[a, b]}$	p is the probability of some event. q is the probability of $\sim p$, so $q=1-p$.

Typographical Conventions

This manual uses some or all of these conventions.

Item	Convention to Use	Example
Example code	Mbnospace font	To assign the value 5 to A , enter $A=5$
Function names/syntax	Mbnospace font	The cos function finds the cosine of each array element. Syntax line example is MLGet Var M__var_name
Keys	Boldface with an initial capital letter	Press the Return key.
Literal strings (in syntax descriptions in reference chapters)	Monospace bol dfor literals	$\mathrm{f}=\mathrm{fr}$ eqspace(n , ' whol \mathbf{e}^{\prime})
Mathematical expressions	Italics for variables Standard text font for functions, operators, and constants	This vector represents the polynomial $p=x^{2}+2 x+3$
MATLAB output	Mbnospace font	MATLAB responds with $A=$
Menu names, menu items, and controls	Boldface with an initial capital letter	Choose the File menu.
New terms	Italics	An array is an ordered collection of information.
String variables (from a finite list)	Mbnospace italics	sysc $=$ d2c(sysd, ' met hod')

Tutorial

Introduction 1-2
Probability Distributions 1-5
Descriptive Statistics 1-43
Cluster Analysis 1-53
Linear Models 1-68
Nonlinear Regression Models 1-100
Hypothesis Tests 1-105
Multivariate Statistics 1-112
Statistical Plots 1-128
Statistical Process Control (SPC) 1-138
Design of Experiments (DOE) 1-143
Demos 1-153
Selected Bibliography 1-175

Introduction

The Statistics Tool box, for use with MATLAB, supplies basic statistics capability on the level of a first course in engineering or scientific statistics. The statistics functions it provides are building blocks suitable for use inside other analytical tools.

Primary Topic Areas

The Statistics Tool box has more than 200 M-files, supporting work in the topical areas below:

- Probability distributions
- Descriptive statistics
- Cluster analysis
- Linear models
- Nonlinear models
- Hypothesis tests
- Multivariate statistics
- Statistical plots
- Statistical process control
- Design of experiments

Probability Distributions

The Statistics Tool box supports 20 probability distributions. For each distribution there are five associated functions. They are:

- Probability density function (pdf)
- Cumulative distribution function (cdf)
- Inverse of the cumulative distribution function
- Random number generator
- Mean and variance as a function of the parameters

For data-driven distributions (beta, binomial, exponential, gamma, normal, Poisson, uniform, and Weibull), the Statistics Toolbox has functions for computing parameter estimates and confidence intervals.

Descriptive Statistics

The Statistics Tool box provides functions for describing the features of a data sample. These descriptive statistics include measures of location and spread, percentile estimates and functions for dealing with data having missing values.

Cluster Analysis

The Statistics Tool box provides functions that allow you to divide a set of objects into subgroups, each having members that are as much alike as possible. This process is called cluster analysis.

Linear Models

In the area of linear models, the Statistics Tool box supports one-way, two-way, and higher-way analysis of variance (ANOVA), analysis of covariance (ANOCOVA), multiplelinear regression, stepwise regression, responsesurface prediction, ridge regression, and one-way multivariate analysis of variance (MANOVA). It supports nonparametric versions of one and two-way ANOVA. It also supports multiple comparisons of the estimates produced by ANOVA and ANOCOVA functions.

Nonlinear Models

For nonlinear models, the Statistics Tool box provides functions for parameter estimation, interactive prediction and visualization of multidimensional nonlinear fits, and confidence intervals for parameters and predicted values.

Hypothesis Tests

The Statistics Tool box also provides functions that do the most common tests of hypothesis - t-tests, Z-tests, nonparametric tests, and distribution tests.

Multivariate Statistics

The Statistics Toolbox supports methods in multivariate statistics, including principal components analysis, linear discriminant analysis, and one-way multivariate analysis of variance.

Statistical Plots

The Statistics Tool box adds box plots, normal probability plots, Weibull probability plots, control charts, and quantilequantile plots to the arsenal of graphs in MATLAB. There is also extended support for polynomial curvefitting and prediction. There are functions to create scatter plots or matrices of scatter plots for grouped data, and to identify points interactively on such plots. There is a function to interactively explore a fitted regression model.

Statistical Process Control (SPC)

F or SPC, the Statistics Tool box provides functions for plotting common control charts and performing process capability studies.

Design of Experiments (DOE)

The Statistics Tool box supports full and fractional factorial designs and D-optimal designs. There are functions for generating designs, augmenting designs, and optimally assigning units with fixed covariates.

Probability Distributions

Probability distributions arise from experiments where the outcome is subject to chance. The nature of the experiment dictates which probability distributions may be appropriate for modeling the resulting random outcomes. There are two types of probability distributions - continuous and discrete.

Continuous (data)	Continuous (statistics)	Discrete
Beta	Chi-square	Binomial
Exponential	Noncentral Chi-square	Discrete Uniform
Gamma	F	Geometric
Lognormal	Noncentral F	Hypergeometric
Normal	t	Negative Binomial
Rayleigh	Noncentral t	Poisson
Uniform		
Weibull		

Suppose you are studying a machine that produces videotape. One measure of the quality of the tape is the number of visual defects per hundred feet of tape. The result of this experiment is an integer, since you cannot observe 1.5 defects. To model this experiment you should use a discrete probability distribution.

A measure affecting the cost and quality of videotape is its thickness. Thick tape is more expensive to produce, while variation in the thickness of the tape on the reel increases the likelihood of breakage. Suppose you measure the thickness of the tape every 1000 feet. The resulting numbers can take a continuum of possible values, which suggests using a continuous probability distribution to model the results.

Using a probability model does not allow you to predict the result of any individual experiment but you can determine the probability that a given outcome will fall inside a specific range of values.

This fol lowing two sections provide more information about the available distributions:

- "Overview of the Functions"
- "Overview of the Distributions"

Overview of the Functions

MATLAB provides five functions for each distribution, which are discussed in the following sections:

- "Probability Density Function (pdf)"
- "Cumulative Distribution Function (cdf)"
- "I nverse Cumulative Distribution Function"
- "Random Number Generator"
- "Mean and Variance as a F unction of Parameters"

Probability Density Function (pdf)

The probability density function (pdf) has a different meaning depending on whether the distribution is discrete or continuous.

For discrete distributions, the pdf is the probability of observing a particular outcome. In our videotape example, the probability that there is exactly one defect in a given hundred feet of tape is the value of the pdf at 1.
Unlike discrete distributions, the pdf of a continuous distribution at a value is not the probability of observing that value. For continuous distributions the probability of observing any particular value is zero. To get probabilities you must integrate the pdf over an interval of interest. For examplethe probability of the thickness of a videotape being between one and two millimeters is the integral of the appropriate pdf from one to two.

A pdf has two theoretical properties:

- The pdf is zero or positive for every possible outcome.
- The integral of a pdf over its entire range of values is one.

A pdf is not a singlefunction. Rather a pdf is a family of functions characterized by one or more parameters. Once you choose (or estimate) the parameters of a pdf, you have uniquel y specified the function.

The pdf function call has the same general format for every distribution in the Statistics Tool box. The following commands illustrate how to call the pdf for the normal distribution.

```
x = [-3: 0. 1: 3];
f = normpdf(x, 0, 1);
```

The variablef contains the density of the normal pdf with parameters $\mu=0$ and $\sigma=1$ at the values in x. The first input argument of every pdf is the set of values for which you want to evaluate the density. Other arguments contain as many parameters as are necessary to define the distribution uniquely. The normal distribution requires two parameters; a location parameter (the mean, μ) and a scale parameter (the standard deviation, σ).

Cumulative Distribution Function (cdf)

If f is a probability density function for random variable X, the associated cumulative distribution function (cdf) F is

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(t) d t
$$

The cdf of a value $x, F(x)$, is the probability of observing any outcome less than or equal to x.

A cdf has two theoretical properties:

- The cdf ranges from 0 to 1.
- If $y>x$, then the cdf of y is greater than or equal to the cdf of x.

The cdf function call has the same general format for every distribution in the Statistics Tool box. Thefollowing commands illustratehow to call the cdf for the normal distribution.

$$
\begin{aligned}
& x=[-3: 0.1: 3] ; \\
& p=\operatorname{normdf}(x, 0,1) ;
\end{aligned}
$$

The variablep contains the probabilities associated with the normal cdf with parameters $\mu=0$ and $\sigma=1$ at the values in x. The first input argument of every cdf is the set of values for which you want to evaluate the probability. Other arguments contain as many parameters as are necessary to define the distribution uniquely.

Inverse Cumulative Distribution Function

The inverse cumulative distribution function returns critical values for hypothesis testing given significance probabilities. To understand the relationship between a continuous cdf and its inverse function, try the following:

```
x = [-3: 0. 1: 3];
xnew = normi nv( normedf (x, 0, 1), 0, 1);
```

How does xnew compare with x ? Conversely, try this:

$$
p=[0.1: 0.1: 0.9] ;
$$

pnew $=$ normedf($\operatorname{norminv}(p, 0,1), 0,1)$;
How does pnew compare with p?
Calculating the cdf of values in the domain of a continuous distribution returns probabilities between zero and one. Applying the inverse cdf to these probabilities yields the original values.

For discrete distributions, the relationship between a cdf and its inverse function is more complicated. It is likely that there is no x value such that the cdf of x yields p. In these cases the inverse function returns the first value x such that the cdf of x equals or exceeds p. Try this:
$x=[0: 10]$;
$y=$ bi noi nv(bi nocdf ($x, 10,0.5$), 10, 0.5);
How does x compare with y ?
The commands bel ow illustrate the problem with reconstructing the probability p from the value x for discrete distributions.
$p=[0.1: 0.2: 0.9] ;$
pnew $=$ bi nocdf (bi noi nv(p, 10, 0.5), 10, 0.5)
pnew $=$
0. 1719
0. 3770
0. 6230
0. 8281
0. 9453

The inverse function is useful in hypothesis testing and production of confidence intervals. Here is the way to get a 99\% confidence interval for a normally distributed sample.

$$
\begin{aligned}
\mathrm{p} & =\left[\begin{array}{ll}
0.005 & 0.995
\end{array}\right] \\
\mathrm{x} & =\operatorname{nor} \operatorname{mi} \operatorname{nv}(p, 0,1) \\
\mathrm{x} & = \\
& -2.5758 \quad 2.5758
\end{aligned}
$$

The variable x contains the values associated with the normal inverse function with parameters $\mu=0$ and $\sigma=1$ at the probabilities in p. The difference $p(2)-p(1)$ is 0.99. Thus, the values in x define an interval that contains 99\% of the standard normal probability.

The inverse function call has the same general format for every distribution in the Statistics Toolbox. The first input argument of every inversefunction is the set of probabilities for which you want to evaluate the critical values. Other arguments contain as many parameters as are necessary to define the distribution uniquely.

Random Number Generator

The methods for generating random numbers from any distribution all start with uniform random numbers. Once you have a uniform random number generator, you can produce random numbers from other distributions either directly or by using inversion or rejection methods, described below. See "Syntax for Random N umber Functions" on page 1-10 for details on using generator functions.

Direct. Direct methods flow from the definition of the distribution.
As an example, consider generating binomial random numbers. Y ou can think of binomial random numbers as the number of heads in n tosses of a coin with probability p of a heads on any toss. If you generaten uniform random numbers and count the number that are greater than p, the result is binomial with parameters n and p.

Inversion. The inversion method works due to a fundamental theorem that relates the uniform distribution to other continuous distributions.
If F is a continuous distribution with inverse F^{-1}, and U is a uniform random number, then $F^{-1}(U)$ has distribution F.

So, you can generate a random number from a distribution by applying the inverse function for that distribution to a uniform random number. Unfortunately, this approach is usually not the most efficient.

Rejection. The functional form of some distributions makes it difficult or time consuming to generate random numbers using direct or inversion methods. Rejection methods can sometimes provide an elegant solution in these cases.

Suppose you want to generate random numbers from a distribution with pdf f . To use rejection methods you must first find another density, g, and a constant, c , so that the inequality below holds.

$$
f(x) \leq c g(x) \forall x
$$

You then generate the random numbers you want using the following steps:
1 Generate a random number x from distribution G with density g .
2 Form the ratio $r=\frac{c g(x)}{f(x)}$.
3 Generate a uniform random number u.
4 If the product of u and r is less than one, return x.
5 Otherwise repeat steps one to three.
For efficiency you need a cheap method for generating random numbers from G, and the scalar c should be small. The expected number of iterations is c .

Syntax for Random Number Functions. You can generate random numbers from each distribution. This function provides a single random number or a matrix of random numbers, depending on the arguments you specify in the function call.

F or example, here is the way to generate random numbers from the beta distribution. Four statements obtain random numbers: the first returns a single number, the second returns a 2-by-2 matrix of random numbers, and the third and fourth return 2-by-3 matrices of random numbers.

```
a = 1;
b = 2;
c =[.1 . 5; 1 2];
d = [. 25 . 75; 5 10];
m=[\mp@code{2 3];}
nrow = 2;
ncol = 3;
```

```
r1 = bet arnd(a,b)
r1 =
    0.4469
r2 = bet arnd(c,d)
r2 =
    0.8931 0.4832
    0. }131
    0. }240
r3 = bet arnd(a,b,m)
r3 =
```

0.4196
0. 6078
0. 1392
0. 0410
0. 0723
0. 0782

```
r4 = bet arnd( \(\mathrm{a}, \mathrm{b}\), nrow, ncol )
r4 =
```

0. 0520
1. 3975
2. 1284
3. 3891
4. 1848
5. 5186

Mean and Variance as a Function of Parameters

The mean and variance of a probability distribution are generally simple functions of the parameters of the distribution. The Statistics Tool box functions ending in "st at " all produce the mean and variance of the desired distribution for the given parameters.
The example bel ow shows a contour plot of the mean of theWeibull distribution as a function of the parameters.

```
x = (0.5:0.1:5);
y = (1:0.04:2);
[X,Y] = meshgrid(x,y);
Z = wei bstat ( }X,Y)\mathrm{ ;
[c,h] = contour(x,y, Z,[0.4 0.6 1.0 1.8]);
cl abel (c);
```


Overview of the Distributions

The following sections describe the available probability distributions:

- "Beta Distribution" on page 1-13
- "Binomial Distribution" on page 1-15
- "Chi-Square Distribution" on page 1-17
- "Noncentral Chi-Square Distribution" on page 1-18
- "Discrete Uniform Distribution" on page 1-20
- "Exponential Distribution" on page 1-21
- "F Distribution" on page 1-23
- "Noncentral F Distribution" on page 1-24
- "Gamma Distribution" on page 1-25
- "Geometric Distribution" on page 1-27
- "Hypergeometric Distribution" on page 1-28
- "Lognormal Distribution" on page 1-30
- "Negative Binomial Distribution" on page 1-31
- "Normal Distribution" on page 1-32
- "Poisson Distribution" on page 1-34
- "Rayleigh Distribution" on page 1-35
- "Student's t Distribution" on page 1-37
- "Noncentral t Distribution" on page 1-38
- "Uniform (Continuous) Distribution" on page 1-39
- "Weibull Distribution" on page 1-40

Beta Distribution

The following sections provide an overview of the beta distribution.
Background on the Beta Distribution. The beta distribution describes a family of curves that are unique in that they are nonzero only on the interval (01). A more general version of the function assigns parameters to the end-points of the interval.

The beta cdf is the same as the incompl ete beta function.
The beta distribution has a functional relationship with the distribution. If Y is an observation from Student's t distribution with v degrees of freedom, then the following transformation generates X , which is beta distributed.

$$
\begin{aligned}
& X=\frac{1}{2}+\frac{1}{2} \frac{Y}{\sqrt{v+Y^{2}}} \\
& \text { if } Y \sim t(v) \text { then } X \sim \beta\left(\frac{v}{2}, \frac{v}{2}\right)
\end{aligned}
$$

The Statistics Tool box uses this relationship to compute val ues of thet cdf and inverse function as well as generating t distributed random numbers.

Definition of the Beta Distribution. The beta pdf is

$$
y=f(x \mid a, b)=\frac{1}{B(a, b)} x^{a-1}(1-x)^{b-1} l_{(0,1)(x)}
$$

where $B(\cdot)$ is the Beta function. The indicator function $I_{(0,1)}(x)$ ensures that only values of x in the range (01) have nonzero probability.

Parameter Estimation for the Beta Distribution. Suppose you are collecting data that has hard lower and upper bounds of zero and one respectively. Parameter estimation is the process of determining the parameters of the beta distribution that fit this data best in some sense.

One popular criterion of goodness is to maximize the likelihood function. The likelihood has the same form as the beta pdf. But for the pdf, the parameters are known constants and the variable is x. The likelihood function reverses the roles of the variables. Here, the sample values (the x's) are already observed. So they are the fixed constants. The variables are the unknown parameters.

Maximum likelihood estimation (MLE) involves calculating the values of the parameters that give the highest likelihood given the particular set of data.

The function bet af it returns the MLEs and confidence intervals for the parameters of the beta distribution. Here is an example using random numbers from the beta distribution with $a=5$ and $b=0.2$.

```
r = bet arnd( 5, 0. 2, 100,1);
[phat, pci] = bet afit(r)
phat =
```

 \(\begin{array}{ll}\text { 4. } 5330 & 0.2301\end{array}\)
 $\mathrm{pci}=$
2. $8051 \quad 0.1771$
6. 2610
0. 2832

The MLE for parameter a is 4.5330, compared to the true value of 5. The 95\% confidence interval for a goes from 2.8051 to 6.2610 , which includes the true value.
Similarly the MLE for parameter bis 0.2301, compared tothetruevalue of 0.2. The 95% confidence interval for b goes from 0.1771 to 0.2832 , which also includes the true value. Of course, in this made-up example we know the "true value." In experimentation we do not.

Example and Plot of the Beta Distribution. The shape of the beta distribution is quite variable depending on the values of the parameters, as illustrated by the plot below.

The constant pdf (the flat line) shows that the standard uniform distribution is a special case of the beta distribution.

Binomial Distribution

The following sections provide an overview of the binomial distribution.
Background of the Binomial Distribution. The binomial distribution models the total number of successes in repeated trials from an infinite population under the fol lowing conditions:

- Only two outcomes are possible on each of n trials.
- The probability of success for each trial is constant.
- All trials are independent of each other.

J ames Bernoulli derived the binomial distribution in 1713 (Ars Conjectandi). Earlier, Blaise Pascal had considered the special case where $p=1 / 2$.

Definition of the Binomial Distribution. The binomial pdf is

$$
\begin{aligned}
& y=f(x \mid n, p)=\left.{ }_{(x)}^{n} p^{x} q^{(1-x)}\right|_{(0,1, \ldots, n)}(x) \\
& \text { where }(\stackrel{n}{x})=\frac{n!}{x!(n-x)!} \text { and } q=1-p
\end{aligned}
$$

The binomial distribution is discrete. For zero and for positive integers less than n , the pdf is nonzero.

Parameter Estimation for the Binomial Distribution. Suppose you are collecting data from a widget manufacturing process, and you record the number of widgets within specification in each batch of 100 . You might be interested in the probability that an individual widget is within specification. Parameter estimation is the process of determining the parameter, p, of the binomial distribution that fits this data best in some sense.

One popular criterion of goodness is to maximize the likelihood function. The likelihood has the same form as the binomial pdf above. But for the pdf, the parameters (n and p) are known constants and the variable is x. The likelihood function reverses the roles of the variables. Here, the sample values (the x's) are already observed. So they are the fixed constants. The variables are the
unknown parameters. MLE involves calculating the value of p that give the highest likelihood given the particular set of data.

The function bi nof it returns the MLEs and confidence intervals for the parameters of the binomial distribution. Here is an example using random numbers from the binomial distribution with $n=100$ and $p=0.9$.

```
r = bi nornd(100,0.9)
r =
    88
[phat, pci] = bi nofit(r, 100)
phat =
    0. }880
pci =
0. 7998
0. 9364
```

The MLE for parameter p is 0.8800 , compared to the true value of 0.9. The 95% confidence interval for p goes from 0.7998 to 0.9364 , which includes the true value. Of course, in this made-up example we know the "true value" of p. In experimentation we do not.

Example and Plot of the Binomial Distribution. The following commands generate a plot of the binomial pdf for $n=10$ and $p=1 / 2$.

```
x = 0: 10;
y = bi nopdf (x,10,0.5);
pl ot (x,y,' +')
```


Chi-Square Distribution

The following sections provide an overview of the χ^{2} distribution.
Background of the Chi-Square Distribution. The χ^{2} distribution is a special case of the gamma distribution where $b=2$ in the equation for gamma distribution below.

$$
y=f(x \mid a, b)=\frac{1}{b^{a} \Gamma(a)} x^{a-1} e^{-\frac{x}{b}}
$$

The χ^{2} distribution gets special attention because of its importance in normal sampling theory. If a set of n observations is normally distributed with variance σ^{2}, and s^{2} is the sample standard deviation, then

$$
\frac{(n-1) s^{2}}{\sigma^{2}} \sim \chi^{2}(n-1)
$$

The Statistics Tool box uses the above relationship to calculate confidence intervals for the estimate of the normal parameter σ^{2} in the function normf it.

Definition of the Chi-Square Distribution. The χ^{2} pdf is

$$
y=f(x \mid v)=\frac{x^{(v-2) / 2} e^{-x / 2}}{2^{\frac{v}{2}} \Gamma(v / 2)}
$$

where $\Gamma(\cdot)$ is the Gamma function, and v is the degrees of freedom.
Example and Plot of the Chi-Square Distribution. The χ^{2} distribution is skewed to the right especially for few degrees of freedom (v). The plot shows the χ^{2} distribution with four degrees of freedom.

```
x = 0: 0. 2: 15;
y = chi 2pdf (x,4);
pl ot ( }x,y\mathrm{ )
```


Noncentral Chi-Square Distribution

The following sections provide an overview of the noncentral χ^{2} distribution.
Background of the Noncentral Chi-Square Distribution. The χ^{2} distribution is actually a simple special case of the noncentral chi-square distribution. One way to generate random numbers with a χ^{2} distribution (with v degrees of freedom) is to sum the squares of v standard normal random numbers (mean equal tozero.)

What if we allow the normally distributed quantities to have mean other than zero? The sum of squares of these numbers yields the noncentral chi-square distribution. The noncentral chi-square distribution requires two parameters; the degrees of freedom and the noncentrality parameter. The noncentrality parameter is the sum of the squared means of the normally distributed quantities.

The noncentral chi-square has scientific application in thermodynamics and signal processing. The literature in these areas may refer to it as the Ricean or generalized Rayleigh distribution.

Definition of the Noncentral Chi-Square Distribution. There are many equivalent formulas for the noncentral chi-square distribution function. One formulation uses a modified Bessel function of the first kind. Another uses the generalized Laguerre polynomials. The Statistics Tool box computes the cumulative distribution function values using a weighted sum of χ^{2} probabilities with the weights equal to the probabilities of a Poisson distribution. The Poisson parameter is one-half of the noncentrality parameter of the noncentral chi-square.

$$
F(x \mid v, \delta)=\sum_{j=0}^{\infty} \frac{\left(\frac{1}{2} \delta\right)^{j}}{j!} e^{-\frac{\delta}{2}} \operatorname{Pr}\left[\chi_{v+2 j}^{2} \leq x\right]
$$

where δ is the noncentrality parameter.
Example of the Noncentral Chi-Square Distribution. Thefollowing commands generate a plot of the noncentral chi-square pdf.

```
x = (0: 0. 1: 10) ';
p1 = ncx2pdf(x,4,2);
p = chi 2pdf(x,4);
pl ot (x, p, ' - - ', x, pl, ' - ')
```


Discrete Uniform Distribution

Thefollowing sections provide an overview of the discrete uniform distribution.
Background of the Discrete Uniform Distribution. The discrete uniform distribution is a simple distribution that puts equal weight on the integers from one to N .

Definition of the Discrete Uniform Distribution. The discrete uniform pdf is

$$
y=f(x \mid N)=\frac{1}{N} I_{(1, \ldots, N)}(x)
$$

Example and Plot of the Discrete Uniform Distribution. As for all discrete distributions, the cdf is a step function. The plot shows the discrete uniform cdf for $\mathrm{N}=10$.

```
x = 0: 10;
y = uni dcdf (x,10);
st ai rs(x,y)
set(gca,' Xl i m, [ O 11])
```


To pick a random sample of 10 from a list of 553 items:

```
numbers = uni dr nd( 553, 1, 10)
numbers =
    293}30372 5 213 213 37 231 380 326 515 515 468
```


Exponential Distribution

The following sections provide an overview of the exponential distribution.
Background of the Exponential Distribution. Like the chi-square distribution, the exponential distribution is a special case of the gamma distribution (obtained by setting a =1)

$$
y=f(x \mid a, b)=\frac{1}{b^{a} \Gamma(a)} x^{a-1} e^{-\frac{x}{b}}
$$

where $\Gamma(\cdot)$ is the Gamma function.
The exponential distribution is special because of its utility in modeling events that occur randomly over time. The main application area is in studies of lifetimes.

Definition of the Exponential Distribution. The exponential pdf is

$$
y=f(x \mid \mu)=\frac{1}{\mu} e^{-\frac{x}{\mu}}
$$

Parameter Estimation for the Exponential Distribution. Suppose you are stress testing light bulbs and collecting data on their lifetimes. You assume that these lifetimes follow an exponential distribution. You want to know how long you can expect the average light bulb to last. Parameter estimation is the process of determining the parameters of the exponential distribution that fit this data best in some sense.

One popular criterion of goodness is to maximize the likelihood function. The likelihood has the same form as the exponential pdf above. But for the pdf, the parameters are known constants and the variable is x. The likelihood function reverses the roles of the variables. Here, the sample values (the x's) arealready observed. So they are the fixed constants. The variables are the unknown parameters. MLE involves calculating the values of the parameters that give the highest likelihood given the particular set of data.

The function expf it returns the MLEs and confidence intervals for the parameters of the exponential distribution. Here is an example using random numbers from the exponential distribution with $\mu=700$.

```
lifetimes = exprnd(700, 100, 1);
[muhat, muci] = expfit(lifetimes)
muhat =
```

 672. 8207
 muci $=$
547. 4338
810. 9437

The MLE for parameter μ is 672, compared to the true value of 700. The 95\% confidence interval for μ goes from 547 to 811, which includes the true value.

In our life tests we do not know the true value of μ so it is nice to have a confidence interval on the parameter to give a range of likely values.

Example and Plot of the Exponential Distribution. For exponentially distributed lifetimes, the probability that an item will survive an extra unit of time is independent of the current age of the item. The example shows a specific case of this special property.

```
| = 10: 10: 60;
I pd = I +0. 1;
del tap = (expcdf(I pd, 50)- expcdf(I,50))./(1- expcdf(I,50))
deltap =
```

0. 0020
1. 0020
2. 0020
3. 0020
4. 0020
5. 0020

The plot bel ow shows the exponential pdf with its parameter (and mean), μ, set to 2.

```
x = 0: 0. 1: 10;
y = exppdf(x,2);
pl ot ( }x,y\mathrm{ )
```


F Distribution

The following sections provide an overview of the F distribution.
Background of the \mathbf{F} distribution. TheF distribution has a natural relationship with the chi-square distribution. If χ_{1} and χ_{2} are both chi-square with v_{1} and v_{2} degrees of freedom respectively, then the statistic F below is F distributed.

$$
F\left(v_{1}, v_{2}\right)=\frac{\frac{\chi_{1}}{v_{1}}}{\frac{\chi_{2}}{v_{2}}}
$$

The two parameters, v_{1} and v_{2}, are the numerator and denominator degrees of freedom. That is, v_{1} and v_{2} are the number of independent pieces information used to calculate χ_{1} and χ_{2} respectively.

Definition of the \mathbf{F} distribution. The pdf for the F distribution is

$$
y=f\left(x \mid v_{1}, v_{2}\right)=\frac{\Gamma\left[\frac{\left(v_{1}+v_{2}\right)}{2}\right]}{\Gamma\left(\frac{v_{1}}{2}\right) \Gamma\left(\frac{v_{2}}{2}\right)}\left(\frac{v_{1}}{v_{2}}\right)^{\frac{v_{1}}{2}} \frac{x^{\frac{v_{1}-2}{2}}}{\left[1+\left(\frac{v_{1}}{v_{2}}\right) x\right]^{\frac{v_{1}+v_{2}}{2}}}
$$

where $\Gamma(\cdot)$ is the Gamma function.
Example and Plot of the \mathbf{F} distribution. The most common application of the F distribution is in standard tests of hypotheses in analysis of variance and regression.

The plot shows that the F distribution exists on the positive real numbers and is skewed to the right.

$$
\begin{aligned}
& x=0: 0.01: 10 ; \\
& y=f \operatorname{pdf}(x, 5,3) ; \\
& \text { pl ot }(x, y)
\end{aligned}
$$

N oncentral F Distribution

The following sections provide an overview of the noncentral F distribution.
Background of the Noncentral F Distribution. As with the χ^{2} distribution, the F distribution is a special case of the noncentral F distribution. The F distribution is the result of taking the ratio of two χ^{2} random variables each di vided by its degrees of freedom.
If the numerator of the ratio is a noncentral chi-square random variable di vided by its degrees of freedom, the resulting distribution is the noncentral F distribution.

The main application of the noncentral F distribution is to calculate the power of a hypothesis test relative to a particular alternative.

Definition of the Noncentral F Distribution. Similar to the noncentral χ^{2} distribution, the tool box calculates noncentral F distribution probabilities as a weighted sum of incomplete beta functions using Poisson probabilities as the weights.

$$
F\left(x \mid v_{1}, v_{2}, \delta\right)=\sum_{j=0}^{\infty} \frac{\left(\frac{1}{2} \delta\right)^{j}}{j!} e^{-\frac{\delta}{2}} l\left(\left.\frac{v_{1} \cdot x}{v_{2}+v_{1} \cdot x} \right\rvert\, \frac{v_{1}}{2}+j, \frac{v_{2}}{2}\right)
$$

$l(x \mid a, b)$ is the incomplete beta function with parameters a and b, and δ is the noncentrality parameter.

Example and Plot of the Noncentral F Distribution. The following commands generate a plot of the noncentral F pdf.

```
x = (0.01: 0. 1: 10.01)';
p1 = ncf pdf (x, 5, 20, 10);
p = fpdf(x,5,20);
pl ot (x, p,'--', x, pl,' -')
```


Gamma Distribution

The following sections provide an overview of the gamma distribution.
Background of the Gamma Distribution. The gamma distribution is a family of curves based on two parameters. Thechi-square and exponential distributions, which arechildren of the gamma distribution, are one-parameter distributions that fix one of the two gamma parameters.
The gamma distribution has the following relationship with the incomplete Gamma function.

$$
\Gamma(x \mid a, b)=\operatorname{gammainc}\left(\frac{x}{b}, a\right)
$$

For $\mathrm{b}=1$ the functions are identical.
When a is large, the gamma distribution closely approximates a normal distribution with the advantage that the gamma distribution has density only for positive real numbers.

Definition of the Gamma Distribution. The gamma pdf is

$$
y=f(x \mid a, b)=\frac{1}{b^{a} \Gamma(a)} x^{a-1} e^{-\frac{x}{b}}
$$

where $\Gamma(\cdot)$ is the Gamma function.
Parameter Estimation for the Gamma Distribution. Suppose you are stress testing computer memory chips and collecting data on their lifetimes. You assumethat these lifetimes follow a gamma distribution. You want to know how long you can expect the average computer memory chip to last. Parameter estimation is the process of determining the parameters of the gamma distribution that fit this data best in some sense.

One popular criterion of goodness is to maximize the likelihood function. The likelihood has the same form as the gamma pdf above. But for the pdf, the parameters are known constants and the variable is x. The likelihood function reverses the roles of the variables. Here, the sample values (the x's) are al ready observed. So they are the fixed constants. The variables are the unknown parameters. MLE involves calculating the values of the parameters that give the highest likelihood given the particular set of data.

The function ganfi it returns the MLEs and confidence intervals for the parameters of the gamma distribution. Here is an example using random numbers from the gamma distribution with $a=10$ and $b=5$.

```
|ifetimes = gamnd(10,5,100,1);
[phat, pci] = ganfit(lifetimes)
phat =
    10. }9821\mathrm{ 4. }725
pci =
    7. }4001\quad\mathrm{ 3. }154
    14. }564
    6. }297
```

Note phat (1) $=\hat{a}$ and phat (2) $=\hat{\mathrm{b}}$. The MLE for parameter a is 10.98 , compared to the true value of 10 . The 95% confidence interval for a goes from 7.4 to 14.6 , which includes the true value.

Similarly the MLE for parameter b is 4.7, compared to the true value of 5. The 95% confidence interval for b goes from 3.2 to 6.3 , which also includes the true value.

In our life tests we do not know the true value of a and b so it is nice to have a confidence interval on the parameters to give a range of likely values.

Example and Plot of the Gamma Distribution. In the example the gamma pdf is plotted with the solid line. The normal pdf has a dashed line type.

```
x = gami nv((0.005: 0.01: 0. 995), 100, 10);
y = gampdf(x, 100,10);
y1 = nor mpdf (x,1000, 100);
pl ot (x, y, ' - ', x, yl,' - .' )
```


Geometric Distribution

The following sections provide an overview of the geometric distribution.
Background of the Geometric Distribution. The geometric distribution is discrete, existing only on the nonnegative integers. It is useful for modeling the runs of consecutive successes (or failures) in repeated independent trials of a system.

The geometric distribution models the number of successes before one failure in an independent succession of tests where each test results in success or failure.

Definition of the Geometric Distribution. The geometric pdf is

$$
y=f(x \mid p)=\operatorname{pq}^{\mathrm{x}} \mathrm{I}_{(0,1, \ldots)}(\mathrm{x})
$$

where $q=1-p$.
Example and Plot of the Geometric Distribution. Suppose the probability of a five-year-old battery failing in cold weather is 0.03 . What is the probability of starting 25 consecutive days during a long cold snap?

1 - geocdf($25,0.03$)
ans $=$
0. 4530

The plot shows the cdf for this scenario.

```
x = 0: 25;
y = geocdf(x, 0.03);
stairs(x,y)
```


Hypergeometric Distribution

The following sections provide an overview of the hypergeometric distribution.
Background of the Hypergeometric Distribution. The hypergeometric distribution models the total number of successes in a fixed size sample drawn without replacement from a finite population.

The distribution is discrete, existing only for nonnegative integers less than the number of samples or the number of possible successes, whichever is greater.

The hypergeometric distribution differs from the binomial only in that the population is finite and the sampling from the population is without replacement.

The hypergeometric distribution has three parameters that have direct physical interpretations. M is the size of the population. K is the number of items with the desired characteristic in the population. n is the number of samples drawn. Sampling "without replacement" means that once a particular sample is chosen, it is removed from the relevant population for all subsequent selections.

Definition of the Hypergeometric Distribution. The hypergeometric pdf is

$$
y=f(x \mid M, K, n)=\frac{\left(\begin{array}{c}
K \\
x
\end{array}\binom{M-K}{n-x}\right.}{\binom{M}{n}}
$$

Example and Plot of the Hypergeometric Distribution. The plot shows the cdf of an experiment taking 20 samples from a group of 1000 where there are 50 items of the desired type.

```
x = 0: 10;
y = hygecdf (x, 1000, 50, 20);
stairs(x,y)
```


Lognormal Distribution

The following sections provide an overview of the lognormal distribution.
Background of the Lognormal Distribution. The normal and lognormal distributions areclosely related. If X is distributed lognormal with parameters μ and σ^{2}, then $\operatorname{In} X$ is distributed normal with parameters μ and σ^{2}.

The lognormal distribution is applicable when the quantity of interest must be positive, since $\operatorname{In} X$ exists only when the random variable X is positive.
E conomists often model the distribution of income using a lognormal distribution.

Definition of the Lognormal Distribution. The lognormal pdf is

$$
y=f(x \mid \mu, \sigma)=\frac{1}{x \sigma \sqrt{2 \pi}} e^{\frac{-(\ln x-\mu)^{2}}{2 \sigma^{2}}}
$$

Example and Plot of the Lognormal Distribution. Suppose the income of a family of four in the United States fol lows a lognormal distribution with $\mu=\log (20,000)$ and $\sigma^{2}=1.0$. Plot the income density.
x = (10: 1000: 125010) ';
$y=I o g n p d f(x, \log (20000), 1.0)$;
pl ot (x, y)
set(gca,'xtick',[0 300006000090000 120000])
set (gca, ' xt i ckl abel ' , st r 2mat(' 0 ' , ' \$30, 000' , ' \$60, 000' , . . .
\$90, 000' , ' \$120, 000'))

Negative Binomial Distribution

The following sections provide an overview of the negative binomial distribution.

Background of the Negative Binomial Distribution. The geometric distribution is a special case of the negative binomial distribution (also called the Pascal distribution). The geometric distribution models the number of successes before one failure in an independent succession of tests where each test results in success or failure.

In the negative binomial distribution the number of failures is a parameter of the distribution. The parameters are the probability of success, p, and the number of failures, r.

Definition of the Negative Binomial Distribution. The negative binomial pdf is

$$
y=f(x \mid r, p)=\left(\begin{array}{c}
r+x-1 \\
x
\end{array} p^{r} q^{x} I_{(0,1, \ldots)}(x)\right.
$$

where $q=1-p$.
Example and Plot of the Negative Binomial Distribution. The following commands generate a plot of the negative binomial pdf.

```
x = (0:10);
y = nbi npdf ( }x,3,0.5)
pl ot ( }x,y,\mp@subsup{,}{}{\prime}+'
set(gca, ' XLi m, [-0. 5, 10.5])
```


Normal Distribution

The following sections provide an overview of the normal distribution.
Background of the Normal Distribution. The normal distribution is a two parameter family of curves. The first parameter, μ, is the mean. The second, σ, is the standard deviation. The standard normal distribution (written $\Phi(x)$) sets μ to 0 and σ to 1 .
$\Phi(\mathrm{x})$ is functionally rel ated to the error function, erf.

$$
\operatorname{erf}(\mathrm{x})=2 \Phi(\mathrm{x} \sqrt{2})-1
$$

The first use of the normal distribution was as a continuous approximation to the binomial.

The usual justification for using the normal distribution for modeling is the Central Limit Theorem, which states (roughly) that the sum of independent samples from any distribution with finite mean and variance converges to the normal distribution as the sample size goes to infinity.

Definition of the Normal Distribution. The normal pdf is

$$
y=f(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Parameter Estimation for the Normal Distribution. One of the first applications of the normal distribution in data analysis was modeling the height of school children. Suppose we want to estimate the mean, μ, and the variance, σ^{2}, of all the 4th graders in the United States.

We have already introduced MLEs. Another desirable criterion in a statistical estimator is unbiasedness. A statistic is unbiased if the expected value of the statistic is equal to the parameter being estimated. MLEs are not al ways unbiased. For any data sample, there may be more than one unbiased estimator of the parameters of the parent distribution of the sample. For instance, every sample value is an unbiased estimate of the parameter μ of a normal distribution. The Minimum Variance Unbiased Estimator (MVUE) is the statistic that has the minimum variance of all unbiased estimators of a parameter.

The MVUEs of parameters μ and σ^{2} for the normal distribution are the sample average and variance. The sample average is al so the MLE for μ. There aretwo common textbook formulas for the variance.

They are

1) $s^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$
2) $s^{2}=\frac{1}{n-1} \sum^{n}\left(x_{i}-x\right)^{2}$
$i=1$
where

$$
x=\sum_{i=1}^{n} \frac{x_{i}}{n}
$$

Equation 1 is the maximum likelihood estimator for σ^{2}, and equation 2 is the MVUE.

The function nornfit returns the MVUEs and confidence intervals for μ and σ^{2}. Here is a playful example modeling the "heights" (inches) of a randomly chosen 4th grade class.
hei ght $=$ normnd($50,2,30,1)$; $\quad \%$ Si mul ate hei ghts.
[mu, s, muci, sci] = normfit(hei ght)
$\mathrm{mu}=$
50. 2025
s =

1. 7946
muci $=$
2. 5210
3. 8841
$\mathrm{sci}=$
4. 4292
5. 4125

Example and Plot of the Normal Distribution. The plot shows the "bell" curve of the standard normal pdf, with $\mu=0$ and $\sigma=1$.

Poisson Distribution

The following sections provide an overview of the Poisson distribution.
Background of the Poisson Distribution. The Poisson distribution is appropriate for applications that invol ve counting the number of times a random event occurs in a given amount of time, distance, area, etc. Sample applications that involve Poisson distributions include the number of Geiger counter clicks per second, the number of people wal king into a store in an hour, and the number of flaws per 1000 feet of video tape.

The Poisson distribution is a one parameter discrete distribution that takes nonnegative integer values. The parameter, λ, is both the mean and the variance of the distribution. Thus, as the size of the numbers in a particular sample of Poisson random numbers gets larger, so does the variability of the numbers.

As Poisson (1837) showed, the Poisson distribution is the limiting case of a binomial distribution where N approaches infinity and p goes to zero while $N p=\lambda$.

The Poisson and exponential distributions are related. If the number of counts follows the Poisson distribution, then the interval between individual counts follows the exponential distribution.

Definition of the Poisson Distribution. The Poisson pdf is

$$
y=f(x \mid \lambda)=\frac{\lambda^{x}}{x!} e^{-\lambda} I_{(0,1, \ldots)}(x)
$$

Parameter Estimation for the Poisson Distribution. The MLE and the MVUE of the Poisson parameter, λ, is the sample mean. The sum of independent Poisson random variables is also Poisson distributed with the parameter equal to the sum of the individual parameters. The Statistics Tool box makes use of this fact to cal culate confidence intervals on λ. As λ gets Iarge the Poisson distribution can be approximated by a normal distribution with $\mu=\lambda$ and $\sigma^{2}=\lambda$. The Statistics Tool box uses this approximation for calculating confidence intervals for values of λ greater than 100.

Example and Plot of the Poisson Distribution. The plot shows the probability for each nonnegative integer when $\lambda=5$.
$\mathrm{x}=0: 15 ;$
$y=$ poi $\operatorname{sspdf}(x, 5)$;
pl ot ($x, y,{ }^{\prime}+{ }^{\prime}$)

Rayleigh Distribution

The following sections provide an overview of the Rayleigh distribution.
Background of the Rayleigh Distribution. The Rayleigh distribution is a special case of the Weibull distribution. If A and B are the parameters of the Weibull distribution, then the Rayleigh distribution with parameter b is equivalent to the Weibull distribution with parameters $A=1 /\left(2 b^{2}\right)$ and $B=2$.

If the component velocities of a particle in the x and y directions are two independent normal random variables with zero means and equal variances, then the distance the particle travels per unit time is distributed Rayleigh.

Definition of the Rayleigh Distribution. The Rayleigh pdf is

$$
y=f(x \mid b)=\frac{x}{b^{2}} e^{\left(\frac{-x^{2}}{2 b^{2}}\right)}
$$

Parameter Estimation for the Rayleigh Distribution. The rayl fit function returns the MLE of the Rayleigh parameter. This estimate is

$$
b=\sqrt{\frac{1}{2 n} \sum_{i=1}^{n} x_{i}^{2}}
$$

Example and Plot of the Rayleigh Distribution. The following commands generate a plot of the Rayleigh pdf.

$$
\begin{aligned}
& x=[0: 0.01: 2] ; \\
& p=r a y l \operatorname{pdf}(x, 0.5) ; \\
& \text { pl ot }(x, p)
\end{aligned}
$$

Student's t Distribution

The following sections provide an overview of Student's t distribution.
Background of Student's t Distribution. Thet distribution is a family of curves depending on a single parameter v (the degrees of freedom). As v goes to infinity, the t distribution converges to the standard normal distribution.
W. S. Gossett (1908) discovered the distribution through his work at the Guinness brewery. At that time, Guinness did not allow its staff to publish, so Gossett used the pseudonym Student.

If x and s are the mean and standard deviation of an independent random sample of size n from a normal distribution with mean μ and $\sigma^{2}=n$, then

$$
\begin{aligned}
& \mathrm{t}(\mathrm{v})=\frac{\mathrm{x}-\mu}{\mathrm{s}} \\
& v=\mathrm{n}-1
\end{aligned}
$$

Definition of Student's t Distribution. Student's t pdf is

$$
y=f(x \mid v)=\frac{\Gamma\left(\frac{v+1}{2}\right)}{\Gamma\left(\frac{v}{2}\right)} \frac{1}{\sqrt{v \pi}} \frac{1}{\left(1+\frac{x^{2}}{v}\right)^{\frac{v+1}{2}}}
$$

where $\Gamma(\cdot)$ is the Gamma function.
Example and Plot of Student's t Distribution. The plot compares the tistribution with $v=5$ (solid line) to the shorter tailed, standard normal distribution (dashed line).

```
x = - 5: 0. 1: 5;
y = tpdf(x,5);
z = normpdf(x,0,1);
pl ot(x,y,'-',x,z,'-.')
```


Noncentral t Distribution

The following sections provide an overview of the noncentral t distribution.
Background of the Noncentral t Distribution. The noncentral t distribution is a generalization of the familiar Student's t distribution.

If x and s are the mean and standard deviation of an independent random sample of size n from a normal distribution with mean μ and $\sigma^{2}=n$, then

$$
\begin{aligned}
& \mathrm{t}(\mathrm{v})=\frac{\mathrm{x}-\mu}{\mathrm{s}} \\
& \mathrm{v}=\mathrm{n}-1
\end{aligned}
$$

Suppose that the mean of the normal distribution is not μ. Then the ratio has the noncentral t distribution. The noncentrality parameter is the difference between the sample mean and μ.

The noncentral t distribution allows us to determine the probability that we would detect a difference between x and μ in a t test. This probability is the power of the test. As $x-\mu$ increases, the power of a test also increases.

Definition of the Noncentral t Distribution. The most general representation of the noncentral t distribution is quite complicated. J ohnson and K otz (1970) give a formula for the probability that a noncentral t variate falls in the range [-t, t].

$$
\left.\operatorname{Pr}((-t)<x<t \mid(v, \delta))=\sum_{j=0}^{\infty} \frac{\left(\frac{1}{2} \delta^{2}\right)}{j!} e^{-\frac{\delta^{2}}{2}} I_{\left.\left(\left.\frac{x^{2}}{v+x^{2}} \right\rvert\, \frac{1}{2}+j, \frac{v}{2}\right), ~\right) .} \right\rvert\,
$$

$\mathrm{I}(\mathrm{x} \mid \mathrm{a}, \mathrm{b})$ is the incomplete beta function with parameters a and b, δ is the noncentrality parameter, and v is the degrees of freedom.

Example and Plot of the Noncentral t Distribution. The following commands generate a plot of the noncentral t pdf.

```
x = (-5: 0. 1:5)';
p1 = nctcdf (x,10,1);
p = tcdf ( x, 10);
pl ot (x, p, ' - -' , x, p1,' - ')
```


Uniform (Continuous) Distribution

The following sections provide an overview of the uniform distribution.
Background of the Uniform Distribution. The uniform distribution (also called rectangular) has a constant pdf between its two parameters a (the minimum) and b (the maximum). The standard uniform distribution ($a=0$ and $b=1$) is a special case of the beta distribution, obtained by setting both of its parameters to 1.

The uniform distribution is appropriate for representing the distribution of round-off errors in values tabulated to a particular number of decimal places.

Definition of the Uniform Distribution. The uniform cdf is

$$
\mathrm{p}=\mathrm{F}(\mathrm{x} \mid \mathrm{a}, \mathrm{~b})=\frac{\mathrm{x}-\mathrm{a}}{\mathrm{~b}-\mathrm{a}} \mathrm{I}_{[\mathrm{a}, \mathrm{~b}]}(\mathrm{x})
$$

Parameter Estimation for the Uniform Distribution. The sample minimum and maximum are the MLEs of a and b respectively.

Example and Plot of the Uniform Distribution. The example illustrates the inversion method for generating normal random numbers using rand and nor mi nv. Note that the MATLAB function, r andn, does not use inversion since it is not efficient for this case.

```
u = rand(1000, 1);
x = norminv(u,0,1);
hi st(x)
```


Weibull Distribution

The following sections provide an overview of the Weibull distribution.
Background of the Weibull Distribution. Waloddi Weibull (1939) offered the distribution that bears his name as an appropriate analytical tool for modeling the breaking strength of materials. Current usage also includes reliability and lifetime modeling. The Weibull distribution is more flexible than the exponential for these purposes.

To see why, consider the hazard rate function (instantaneous failure rate). If $f(t)$ and $F(t)$ are the pdf and cdf of a distribution, then the hazard rate is

$$
h(t)=\frac{f(t)}{1-F(t)}
$$

Substituting the pdf and cdf of the exponential distribution for $f(t)$ and $F(t)$ above yields a constant. The example bel ow shows that the hazard rate for the Weibull distribution can vary.

Definition of the Weibull Distribution. The Weibull pdf is

$$
y=f(x \mid a, b)=a b x^{b-1} e^{-a x^{b}} I_{(0, \infty)}(x)
$$

Parameter Estimation for the Weibull Distribution. Suppose we want to model the tensilestrength of a thin filament using the Weibull distribution. Thefunction wei bf it gives MLEs and confidence intervals for the Weibull parameters.

```
strength = wei brnd(0.5,2,100,1); % Si mul at ed strengths.
```

[p, ci] = wei bfit(strength)

```
\(\mathrm{p}=\)
    \(0.4746 \quad 1.9582\)
ci \(=\)
    0. \(3851 \quad 1.6598\)
    0. \(5641 \quad\) 2. 2565
```

The default 95\% confidence interval for each parameter contains the true value.

Example and Plot of the Weibull Distribution. The exponential distribution has a constant hazard function, which is not generally the case for the Weibull distribution.

The plot shows the hazard functions for exponential (dashed line) and Weibull (solid line) distributions having the same mean life. The Weibull hazard rate here increases with age (a reasonable assumption).

```
t = 0: 0. 1: 3;
h1 = exppdf(t, 0.6267) ./ (1- expcdf(t, 0.6267));
h2 = wei bpdf(t, 2, 2) ./ (1-wei bcdf(t, 2, 2));
pl ot(t,h1,' --',t,h2,' -')
```


Descriptive Statistics

Data samples can have thousands (even millions) of values. Descriptive statistics are a way to summarize this data into a few numbers that contain most of the relevant information. The following sections explore the features provided by the Statistics Tool box for working with descriptive statistics:

- "Measures of Central Tendency (Location)"
- "Measures of Dispersion"
- "Functions for Data with Missing Values (NaNs)"
- "Function for Grouped Data"
- "Percentiles and Graphical Descriptions"
- "The Bootstrap"

Measures of Central Tendency (Location)

The purpose of measures of central tendency is to locate the data values on the number line. Another term for these statistics is measures of location.

The table gives the function names and descriptions.

Measures of Location

geomean	Geometric mean
har mmean	Harmonic mean
mean	Arithmetic average (in MATLAB)
medi an	50th percentile (in MATLAB)
tri meean	Trimmed mean

The average is a simple and popular estimate of location. If the data sample comes from a normal distribution, then the sample average is also optimal (MVUE of μ).

Unfortunately, outliers, data entry errors, or glitches exist in almost all real data. The sample average is sensitive to these problems. One bad data value can move the average away from the center of the rest of the data by an arbitrarily large distance.

The median and trimmed mean are two measures that are resistant (robust) to outliers. The median is the 50th percentile of the sample, which will only change slightly if you add a large perturbation to any value. The idea behind the trimmed mean is to ignore a small percentage of the highest and lowest values of a sample when determining the center of the sample.

The geometric mean and harmonic mean, like the average, are not robust to outliers. They are useful when the sample is distributed lognormal or heavily skewed.

The example below shows the behavior of the measures of location for a sample with one outlier.

```
x = [ ones(1, 6) 100]
x =
    1
l ocate = [geomean(x) harmmean(x) mean(x) medi an(x)...
    tri mmean(x, 25)]
| ocate =
```

1. 9307
2. 1647
3. 0000
4. 0000
5. 1429

You can see that the mean is far from any data value because of the influence of the outlier. The median and trimmed mean ignore the outlying value and describe the location of the rest of the data values.

Measures of Dispersion

The purpose of measures of dispersion is to find out how spread out the data values are on the number line. Another term for thesestatistics is measures of spread.

The table gives the function names and descriptions.

Measures of Dispersion	
i qr	Interquartile Range
mad	Mean Absolute Deviation
range	Range
std	Standard deviation (in MATLAB)
var	Variance (in MATLAB)

The range (the difference between the maximum and minimum values) is the simplest measure of spread. But if there is an outlier in the data, it will be the minimum or maximum value. Thus, the range is not robust to outliers.

The standard deviation and the variance are popular measures of spread that are optimal for normally distributed samples. The sample variance is the MVUE of the normal parameter σ^{2}. The standard deviation is the square root of the variance and has the desirable property of being in the same units as the data. That is, if the data is in meters, the standard deviation is in meters as well. The variance is in meters ${ }^{2}$, which is more difficult to interpret.

Neither the standard deviation nor the variance is robust to outliers. A data value that is separate from the body of the data can increase the value of the statistics by an arbitrarily large amount.

The Mean Absolute Deviation (MAD) is also sensitive to outliers. But the MAD does not movequite as much as the standard deviation or variance in response to bad data.

The Interquartile Range (IQR) is the difference between the 75th and 25th percentile of the data. Since only the middle 50% of the data affects this measure, it is robust to outliers.

The example bel ow shows the behavior of the measures of dispersion for a sample with one outlier.

```
x = [ ones(1, 6) 100]
x =
    1 
stats = [iqr(x) mad(x) range(x) std(x)]
stats =
    0 24.2449 99.0000 37.4185
```


Functions for Data with Missing Values (NaNs)

Most real-world data sets have one or more missing elements. It is convenient to code missing entries in a matrix as NaN (Not a Number).

Here is a simple example.

```
m = magic(3) ;
m([1 5]) = [NaN NaN]
m}
    NaN 1 6
        N NaN 7
        4 9 2
```

Any arithmetic operation that involves the missing values in this matrix yields NaN , as below.

```
sum(m)
ans =
    NaN NaN 15
```

Removing cells with NaN would destroy the matrix structure. Removing whole rows that contain NaN would discard real data. Instead, the Statistics Toolbox has a variety of functions that aresimilar to other MATLAB functions, but that treat NaN values as missing and therefore ignore them in the calculations.

nansumb m)ans =	
710	13
NaN Functions	
nanmax	Maximum ignoring NaNs
nanmean	Mean ignoring NaNs
nanmedi an	Median ignoring NaNs
nanmin	Minimum ignoring NaNs
nanstd	Standard deviation ignoring NaNs
nansum	Sum ignoring NaNs

In addition, other Statistics Tool box functions operate only on the numeric values, ignoring NaNs. These include i qr, kurt osi s, mad, prctile, range, skewness, and tri mean.

Function for Grouped Data

As we saw in the previous section, the descriptive statistics functions can compute statistics on each column in a matrix. Sometimes, however, you may have your data arranged differently so that measurements appear in one column or variable, and a grouping code appears in a second column or variable. Although MATLAB's syntax makes it simple to apply functions to a subset of an array, in this case it is simpler to use the gr pst at s function.
The gr pst at s function can compute the mean, standard error of the mean, and count (number of observations) for each group defined by one or more grouping variables. If you supply a significance level, it also creates a graph of the group means with confidence intervals.

As an example, load the larger car data set. We can look at the average value of MPG (miles per gallon) for cars grouped by or g (location of the origin of the car).

```
l oad carbi g
grpst at s(NPG, org, 0.05)
ans =
    20. }08
    27. }89
    30.451
```


We can also get the complete set of statistics for MPG grouped by three variables: org, cyl 4 (the engine has four cylinders or not), and when (when the car was made).
[ms, c, n] = grpstats(MPG, \{org cyl 4 when $\}$); [n num2cell([ms c])]

```
ans =
```

' USA'	Other ${ }^{\text {' }}$	' Early'	[14.896]	[0. 33306]	[77]
USA'	' Other '	' M d'	[17.479]	[0.30225]	[75]
USA'	' Other '	' Lat e'	[21. 536]	[0.97961]	[25]
USA'	' Four '	' Early'	[23.333]	[0. 87328]	[12]
USA'	' Four '	' M d'	[27.027]	[0.75456]	[22]
USA'	' Four '	' Lat e'	[29.734]	[0.71126]	[38]
Eur ope'	' Ot her '	M d'	[17.5]	[0.9478]	[4]
Eur ope'	' Ot her '	' Lat e'	[30. 833]	[3.1761]	[3]

' Eur ope'	' Four '	' Early'	[24.714]	[0.73076]	[21]
' Eur ope'	' Four '	' M d'	[26. 912]	[1.0116]	[26]
' Europe'	' Four '	' Lat e'	[35.7]	[1.4265]	[16]
'J apan'	' Ot her '	' Early'	19]	[0.57735]	[3]
'J apan'	' Ot her '	' M d'	[20.833]	[0. 92796]	[3]
'J apan'	' Ot her '	' Lat e'	[26.5]	[2. 0972]	[4]
'J apan'	' Four '	' Early'	[26.083]	[1.1772]	[12]
'J apan'	' Four '	' M d'	[29.5]	[0. 86547]	[25]
'J apan'	' Four '	' Lat e'	[35.3]	[0.68346]	[32]

Percentiles and Graphical Descriptions

Trying to describe a data sample with two numbers, a measure of location and a measure of spread, is frugal but may be misleading.

Another option is to compute a reasonable number of the sample percentiles. This provides information about the shape of the data as well as its location and spread.

The example shows the result of looking at every quartile of a sample containing a mixture of two distributions.

```
x = [ normrnd( 4, 1, 1, 100) normrnd(6, 0. 5, 1, 200) ];
p = 100*(0: 0. 25: 1);
y = prctile(x, p);
z = [p; y]
z =
\begin{tabular}{rrrrr}
0 & 25.0000 & 50.0000 & 75.0000 & 100.0000 \\
1.5172 & 4.6842 & 5.6706 & 6.1804 & 7.6035
\end{tabular}
```

Compare the first two quantiles to the rest.
The box plot is a graph for descriptive statistics. The graph below is a box plot of the data above.

```
boxpl ot (x)
```


The long lower tail and plus signs show the lack of symmetry in the sample values. F or more information on box plots, see "Statistical Plots" on page 1-128.
The histogram is a complementary graph.

The Bootstrap

In recent years the statistical literature has examined the properties of resampling as a means to acquire information about the uncertainty of statistical estimators.

The bootstrap is a procedure that involves choosing random samples with repl acement from a data set and analyzing each sample the same way. Sampling with replacement means that every sampl eis returned to the data set after sampling. So a particular data point from the original data set could appear multipletimes in a given bootstrap sample. The number of elements in each bootstrap sample equals the number of elements in the original data set.

The range of sample estimates we obtain allows us to establish the uncertainty of the quantity we are estimating.

Here is an example taken from Efron and Tibshirani (1993) comparing Law School Admission Test (LSAT) scores and subsequent law school grade point average (GPA) for a sample of 15 law schools.

The least squares fit line indicates that higher LSAT scores go with higher law school GPAs. But how sure are we of this conclusion? The plot gives us some intuition but nothing quantitative.

We can cal culate the correl ation coefficient of the variables using the cor r coef function.

```
rhohat \(=\) corrcoef(Isat,gpa)
rhohat \(=\)
```

0. 7764
1. 7764
2. 0000
3. 0000

Now we have a number, 0.7764 , describing the positive connection between LSAT and GPA, but though 0.7764 may seem large, we still do not know if it is statistically significant.

Using the boot strp function we can resample thel sat and gpa vectors as many times as we like and consider the variation in the resulting correlation coefficients.

Here is an example.

```
rhos1000 = bootstrp(1000,' corrcoef',Isat,gpa);
```

This command resamples the I sat and gpa vectors 1000 times and computes the cor r coef function on each sample. Here is a histogram of the result.
hi st (rhos1000(: , 2), 30)

Nearly all the estimates lie on the interval [0.4 1.0].
This is strong quantitative evidence that LSAT and subsequent GPA are positively correlated. M oreover, it does not require us to make any strong assumptions about the probability distribution of the correlation coefficient.

Cluster Analysis

Cluster analysis, also called segmentation analysis or taxonomy analysis, is a way to partition a set of objects into groups, or clusters, in such a way that the profiles of objects in the same cluster are very similar and the profiles of objects in different clusters are quite distinct.

Cluster analysis can be performed on many different types of data sets. For example, a data set might contain a number of observations of subjects in a study where each observation contains a set of variables.

Many different fields of study, such as engineering, zoology, medicine, linguistics, anthropology, psychology, and marketing, have contributed to the development of clustering techniques and the application of such techniques. For example, cluster analysis can be used to find two similar groups for the experiment and control groups in a study. In this way, if statistical differences are found in the groups, they can be attributed to the experiment and not to any initial difference between the groups.

The following sections explore the clustering features in the Statistics Tool box:

- "Terminology and Basic Procedure"
- "Finding the Similarities Between Objects"
- "Defining the Links Between Objects"
- "E valuating Cluster Formation"
- "Creating Clusters"

Terminology and Basic Procedure

To perform cluster analysis on a data set using the Statistics Tool box functions, follow this procedure:

1 Find the similarity or dissimilarity between every pair of objects in the data set. In this step, you calculate the distance between objects using the pdi st function. The pdi st function supports many different ways to compute this measurement. See "Finding the Similarities Between Objects" on page 1-54 for more information.

2 Group the objects into a binary, hierarchical cluster tree. In this step, you link together pairs of objects that are in close proximity using the

I i nkage function. The I i nkage function uses the distance information generated in step 1 to determine the proximity of objects to each other. As objects are paired into binary clusters, the newly formed clusters are grouped intolarger clusters until a hierarchical tree is formed. See "Defining the Links Between Objects" on page 1-56 for more information.

3 Determine where to divide the hierarchical tree into clusters. In this step, you divide the objects in the hierarchical tree into clusters using the cl uster function. The cl uster function can create clusters by detecting natural groupings in the hierarchical tree or by cutting off the hierarchical tree at an arbitrary point. See "Creating Clusters" on page 1-64 for more information.

The following sections provide more information about each of these steps.

Note The Statistics Tool box includes a convenience function, cl uster dat a, which performs all these steps for you. You do not need to execute the pdi st, I i nkage, or cl ust er functions separately. However, the cl ust er dat a function does not give you access to the options each of the individual routines offers. For example, if you use the pdi st function you can choose the distance calculation method, whereas if you use the cl uster dat a function you cannot.

Finding the Similarities Betw een Objects

You use the pdi st function to calculate the distance between every pair of objects in a data set. F or a data set made up of m objects, there are $m \cdot(m-1) / 2$ pairs in the data set. The result of this computation is commonly known as a similarity matrix (or dissimilarity matrix).

There are many ways to calculate this distance information. By default, the pdi st function calculates the Euclidean distance between objects; however, you can specify one of several other options. See pdi st for more information.

Abstract

Note You can optionally normalize the values in the data set before calculating the di stance information. In a real world data set, variables can be measured against different scales. For example, one variable can measure Intelligence Quotient (IQ) test scores and another variable can measure head circumference. These discrepancies can distort the proximity calculations. Using the zscor e function, you can convert all the values in the data set to use the same proportional scale. See zscor e for more information.

For example, consider a data set, X , made up of five objects where each object is a set of x, y coordinates.

- Object 1: 1, 2
- Object 2: 2.5, 4.5
- Object 3: 2, 2
- Object 4: 4, 1.5
- Object 5: 4, 2.5

You can define this data set as a matrix

$$
X=\left[\begin{array}{ll}
1 & 2 ; 2.5 \\
4.5 ; 2 & 2 ; 4 \\
1.5 ; 4 & 2.5
\end{array}\right]
$$

and pass it to pdi st. The pdi st function calculates the distance between object 1 and object 2 , object 1 and object 3 , and so on until the distances between all the pairs have been calculated. The following figure plots these objects in a graph. The distance between object 2 and object 3 is shown to illustrate one interpretation of distance.

Returning Distance Information

The pdi st function returns this distance information in a vector, Y, where each element contains the distance between a pair of objects.

```
Y = pdi st(X)
Y =
    Col umms 1 through 7
    2.9155 1.0000 3.0414 3.0414 2.5495 3.3541 2.5000
    Col umms 8 through 10
    2.0616 2.0616 1.0000
```

To make it easier to see the relationship between the distance information generated by pdi st and the objects in the original data set, you can reformat the distance vector into a matrix using the squar ef or mfunction. In this matrix, element i,j corresponds to the distance between object i and object j in the original data set. In the following example, el ement 1,1 represents the distance between object 1 and itself (which is zero). Element 1,2 represents the distance between object 1 and object 2 , and so on.

squar ef or $\mathrm{n}(\mathrm{Y})$				
ans $=$				
a				
2.9155	0	2.5495	3.0414	3.0414
1.0000	2.5495	0	2.0616	2.5000
3.0414	3.3541	2.0616	0	1.0000
3.0414	2.5000	2.0616	1.0000	0

Defining the Links Betw een Objects

Once the proximity between objects in the data set has been computed, you can determine which objects in the data set should be grouped together into clusters, using the I i nkage function. The I i nkage function takes the distance information generated by pdi st and links pairs of objects that are close together into binary clusters (clusters made up of two objects). The I i nkage function then links these newly formed clusters to other objects to create bigger clusters until all the objects in the original data set are linked together in a hierarchical tree.

F or example, given the distance vector Y generated by pdi st from the sample data set of x and y coordinates, the I i nkage function generates a hierarchical cluster tree, returning the linkage information in a matrix, Z.

$\mathrm{Z}=$	I i inkage (Y)		
$\mathrm{Z}=$			
	1.0000	3.0000	1.0000
	4.0000	5.0000	1.0000
	6.0000	7.0000	2.0616
	8.0000	2.0000	2.5000

In this output, each row identifies a link. The first two columns identify the objects that have been linked, that is, object 1, object 2, and so on. The third column contains the distance between these objects. For the sample data set of xand y coordinates, thel i nkage function begins by grouping together objects 1 and 3 , which have the closest proximity (distance value $=1.0000$). The I i nkage function continues by grouping objects 4 and 5 , which al so have a distance value of 1.0000 .

The third row indicates that the li nkage function grouped together objects 6 and 7. If our original sample data set contained only five objects, what are objects 6 and 7? Object 6 is the newly formed binary cluster created by the grouping of objects 1 and 3 . When the I i nkage function groups two objects together into a new cluster, it must assign the cluster a unique index value, starting with the value $m+1$, where m is the number of objects in the original data set. (Values 1 through m are already used by the original data set.) Object 7 is the index for the cluster formed by objects 4 and 5 .

As the final cluster, the I i nkage function grouped object 8, the newly formed cluster made up of objects 6 and 7 , with object 2 from the original data set. The fol lowing figuregraphically illustrates the way I i nkage groups the objects into a hierarchy of clusters.

The hierarchical, binary cluster tree created by the I i nkage function is most easily understood when viewed graphically. The Statistics Tool box includes the dendr ogr amfunction that plots this hierarchical tree information as a graph, as in the following example.

In the figure, the numbers along the horizontal axis represent the indices of the objects in the original data set. The links between objects are represented as upside down U-shaped lines. The height of the U indicates the distance between the objects. For example, the link representing the cluster containing objects 1 and 3 has a height of 1 . For moreinformation about creating a dendrogram diagram, see the dendr ogr amfunction reference page.

Evaluating Cluster Formation

After linking the objects in a data set into a hierarchical cluster tree, you may want to verify that the tree represents significant similarity groupings. In addition, you may want more information about the links between the objects. The Statistics Toolbox provides functions to perform both these tasks, as described in the following sections:

- "Verifying the Cluster Tree"
- "Getting More Information About Cluster Links"

Verifying the Cluster Tree

One way to measure the validity of the cluster information generated by the I i nkage function is to compare it with the original proximity data generated by the pdi st function. If the clustering is valid, thelinking of objects in the cluster tree should have a strong correlation with the distances between objects in the distance vector. The cophenet function compares these two sets of values and computes their correlation, returning a value called the cophenetic correlation coefficient. The closer the value of the cophenetic correlation coefficient is to 1 , the better the clustering solution.

You can use the cophenetic correlation coefficient to compare the results of clustering the same data set using different distance calculation methods or clustering algorithms.

For example, you can use the cophenet function to evaluate the clusters created for the sample data set

$$
\begin{aligned}
& c=\operatorname{cophenet}(Z, Y) \\
& c=0.8573
\end{aligned}
$$

where Z is the matrix output by the I i nkage function and Y is the distance vector output by the pdi st function.

Execute pdi st again on the same data set, this time specifying the City Block metric. After running the I i nkage function on this new pdi st output, use the cophenet function to evaluate the clustering using a different distance metric.

```
c = cophenet(Z, Y)
c =
    0.9289
```

The cophenetic correlation coefficient shows a stronger correlation when the City Block metric is used.

Getting More Information About Cluster Links

One way to determine the natural cluster divisions in a data set is to compare the length of each link in a cluster tree with the lengths of neighboring links below it in the tree.

If a link is approximately the same length as neighboring links, it indicates that there are similarities between the objects joined at this level of the hierarchy. These links are said to exhibit a high level of consistency.

If the length of a link differs from neighboring links, it indicates that there are dissimilarities between the objects at this level in the cluster tree. This link is said to be inconsistent with the links around it. In cluster analysis, inconsistent links can indicate the border of a natural division in a data set. The cl ust er function uses a measure of inconsistency to determine where to di vide a data set into clusters. (See "Creating Clusters" on page 1-64 for more information.)

The next section provides an example.
Example: Inconsistent Links. Toillustrate, the following example creates a data set of random numbers with three deliberate natural groupings. In the dendrogram, note how the objects tend to collect into three groups. These three groups are then connected by three longer links. These longer links are inconsistent when compared with the links below them in the hierarchy.

```
rand('seed', 3)
X = [rand(10, 2) +1; rand(10, 2) +2; rand( 10, 2) +3];
Y = pdi st(X);
Z = I i nkage(Y);
dendrogran(Z);
```

These links show inconsistency when compared to links below them.

The relative consistency of each link in a hierarchical cluster tree can be quantified and expressed as the inconsistency coefficient. This value compares the length of a link in a cluster hierarchy with the average length of neighboring links. If the object is consistent with those around it, it will have a low inconsistency coefficient. If the object is inconsistent with those around it, it will have a higher inconsistency coefficient.

To generate a listing of the inconsistency coefficient for each link the cluster tree, use the i nconsi st ent function. The i nconsi stent function compares each link in the cluster hierarchy with adjacent links two levels below it in the cluster hierarchy. This is called the depth of the comparison. Using the i nconsi st ent function, you can specify other depths. The objects at the bottom of the cluster tree, called leaf nodes, that have no further objects below them, have an inconsistency coefficient of zero.

F or example, returning to the sample data set of x and y coordinates, we can use the i nconsi st ent function to calculate the inconsistency values for the links created by the I i nkage function, described in "Defining the Links Between Objects" on page 1-56.

I = inconsi stent (Z)
| =

1.0000	0	1.0000	0
1.0000	0	1.0000	0
1.3539	0.8668	3.0000	0.8165
2.2808	0.3100	2.0000	0.7071

The i nconsi st ent function returns data about the links in an (m-1)-by-4 matrix where each column provides data about the links.

Column	Description
1	Mean of the lengths of all the links included in the calculation
2	Standard deviation of all the links included in the calculation
3	Number of links included in the calculation
4	Inconsistency coefficient

In the sample output, the first row represents the link between objects 1 and 3. (This cluster is assigned the index 6 by the I i nkage function.) Because this a leaf node, the inconsistency coefficient is zero. The second row represents the link between objects 4 and 5, also a leaf node. (This cluster is assigned the index 7 by the linkage function.)

The third row evaluates the link that connects these two leaf nodes, objects 6 and 7. (This cluster is called object 8 in the I i nkage output). Column three indicates that three links are considered in the calculation: the link itself and the two links directly below it in the hierarchy. Column one represents the mean of the lengths of these links. The i nconsi st ent function uses the length information output by the I i nkage function to calculatethe mean. Col umn two represents the standard deviation between the links. The last column contains the inconsistency value for these links, 0.8165 .

The following figure illustrates the links and lengths included in this cal culation.

Row four in the output matrix describes the link between object 8 and object 2. Column three indicates that two links are included in this calculation: the link itself and the link directly below it in the hierarchy. The inconsistency coefficient for this link is 0.7071 .

The following figure illustrates the links and lengths included in this calculation.

Creating Clusters

After you create the hierarchical tree of binary clusters, you can divide the hierarchy into larger clusters using the cl uster function. The cl uster function lets you create clusters in two ways, as discussed in the following sections:

- "Finding the Natural Divisions in the Data Set"
- "Specifying Arbitrary Clusters"

Finding the Natural Divisions in the Data Set

In the hierarchical cluster tree, the data set may naturally align itself into clusters. This can be particularly evident in a dendrogram diagram where groups of objects are densely packed in certain areas and not in others. The inconsistency coefficient of the links in thecluster treecan identify these points where the similarities between objects change. (See "E valuating Cluster Formation" on page 1-59 for more information about the inconsistency coefficient.) Y ou can use this value to determine where the cl uster function draws cluster boundaries.

F or example, if you use the cl uster function to group the sample data set into clusters, specifying an inconsistency coefficient threshold of 0.9 as the value of the cut of f argument, thecl ust er function groups all theobjects in the sample data set into one cluster. In this case, none of the links in the cluster hierarchy had an inconsistency coefficient greater than 0.9.

```
T = cl uster ( Z, 0. 9)
\top =
```

 1
 1
 1
 1
 1
 The cl uster function outputs a vector, T , that is the same size as the original data set. E ach element in this vector contains the number of the cluster into which the corresponding object from the original data set was placed.

If you lower theinconsistency coefficient threshold to 0.8 , thecl ust er function divides the sample data set into three separate clusters.

```
T = cl ust er ( Z, 0. 8)
T =
    1
    3
    1
    2
    2
```

This output indicates that objects 1 and 3 were placed in cluster 1, objects 4 and 5 were placed in cluster 2 , and object 2 was placed in cluster 3 .

Specifying Arbitrary Clusters

Instead of letting the cl ust er function create clusters determined by the natural divisions in the data set, you can specify the number of clusters you want created. In this case, the value of the cut of f argument specifies the point in the cluster hierarchy at which to create the clusters.

For example, you can specify that you want the cl ust er function to divide the sample data set intotwo clusters. In this case, the uster function creates one cluster containing objects 1, 3, 4, and 5 and another cluster containing object 2.

$$
\begin{aligned}
& \mathrm{T}= c l \text { ust er }(Z, 2) \\
& \mathrm{T}= \\
& 1 \\
& 2 \\
& 1 \\
& 1 \\
& 1
\end{aligned}
$$

To help you visualize how the cl ust er function determines how to create these clusters, the following figure shows the dendrogram of the hierarchical cluster tree. When you specify a value of 2 , the cl ust er function draws an imaginary horizontal line across the dendrogram that bisects two vertical lines. All the objects below the line bel ong to one of these two clusters.

If you specify a cut of f value of 3 , the $c l$ ust er function cuts off the hierarchy at a lower point, bisecting three lines.

$$
\begin{aligned}
& \mathrm{T}=\mathrm{cl} \text { ust er }(\mathrm{Z}, 3) \\
& \mathrm{T}= \\
& 1 \\
& 3 \\
& 1 \\
& 2 \\
& 2
\end{aligned}
$$

This time, objects 1 and 3 aregrouped in a cluster, objects 4 and 5 are grouped in a cluster, and object 2 is placed into a cluster, as seen in the following figure.

Linear Models

Linear models represent the relationship between a continuous response variable and one or more predictor variables (either continuous or categorical) in the form

$$
y=X \beta+\varepsilon
$$

where:

- y is an n -by- 1 vector of observations of the response variable.
- X is the n-by-p design matrix determined by the predictors.
- β is a p-by- 1 vector of parameters.
- ε is an n-by- 1 vector of random disturbances, independent of each other and usually having a normal distribution.

MATLAB uses this general form of the linear model to sol ve a variety of specific regression and analysis of variance (ANOVA) problems. For example, for polynomial and multiple regression problems, the columns of X are predictor variable values or powers of such values. For oneway, two-way, and higher-way ANOVA models, the columns of X are dummy (or indicator) variables that encode the predictor categories. For analysis of covariance (ANOCOVA) models, X contains values of a continuous predictor and codes for a categorical predictor.

The fol lowing sections describe a number of functions for fitting various types of linear models:

- "One-Way Analysis of Variance (ANOVA)"
- "Two-Way Analysis of Variance (ANOVA)"
- "N-Way Analysis of Variance"
- "Multiple Linear Regression"
- "Quadratic Response Surface M odels"
- "Stepwise Regression"
- "Generalized Linear Models"
- "Robust and Nonparametric Methods"

See the sections below for a tour of some of the related graphical tools:

- "The polytool Demo" on page 1-156
- "The aoctool Demo" on page 1-161
- "The rsmdemo Demo" on page 1-170

One-Way Analysis of Variance (ANOVA)

The purpose of one-way ANOVA is to find out whether data from several groups have a common mean. That is, to determine whether the groups are actually different in the measured characteristic.

One-way ANOVA is a simple special case of the linear model. The one-way ANOVA form of the model is

$$
\mathrm{y}_{\mathrm{ij}}=\alpha_{. \mathrm{j}}+\varepsilon_{\mathrm{ij}}
$$

where:

- y_{ij} is a matrix of observations in which each column represents a different group.
- $\alpha_{. j}$ is a matrix whose columns are the group means. (The "dot j " notation means that α applies to all rows of the jth column. That is, the value $\alpha_{i j}$ is the same for all i.)
- $\varepsilon_{\mathrm{ij}}$ is a matrix of random disturbances.

The model posits that the columns of y are a constant plus a random disturbance. You want to know if the constants are all the same.

The following sections explore one-way ANOVA in greater detail:

- "Example: One-Way ANOVA"
- "Multiple Comparisons"

Example: One-Way ANOVA

The data bel ow comes from a study by Hogg and Ledolter (1987) of bacteria counts in shipments of milk. The columns of the matrix hogg represent different shipments. The rows are bacteria counts from cartons of milk chosen randomly from each shipment. Do some shipments have higher counts than others?

```
I oad hogg
hogg
hogg =
```



```
    15
    21
    27 17 17 13 % 7 15
    33}114\mp@code{12
```



```
[p,tbl,stats] = anoval(hogg);
p
p =
    1. 1971e- 04
```

The standard ANOVA table has columns for the sums of squares, degrees of freedom, mean squares (SS/df), F statistic, and p-value.

A Figure No. 1: One-way ANOVA					- - - ${ }^{\text {a }}$
Eile Edit Iools Window Help					
ANOVA Table					
Source	55	df	MS	F	Prob>F \wedge
Columns Error	$\begin{aligned} & 803 \\ & 557.17 \end{aligned}$	4 25	$\begin{gathered} 200.75 \\ 22.287 \end{gathered}$	9.01	0.0001
Total	1360.17	29			\checkmark

You can use the F statistic to do a hypothesis test to find out if the bacteria counts are the same. anoval returns the p-value from this hypothesis test.

In this case the p-value is about 0.0001 , a very small value. This is a strong indication that the bacteria counts from the different tankers are not the same. An F statistic as extreme as the observed F would occur by chance only once in 10,000 times if the counts were truly equal.

The p-value returned by anoval depends on assumptions about the random disturbances $\varepsilon_{i j}$ in the model equation. For the p-value to be correct, these di sturbances need to be independent, normally distributed, and have constant variance. See "Robust and Nonparametric Methods" on page 1-95 for a nonparametric function that does not require a normal assumption.

You can get some graphical assurance that the means are different by looking at the box plots in the second figure window displayed by anoval.

Multiple Comparisons

Sometimes you need to determine not just if there are any differences among the means, but specifically which pairs of means are significantly different. It is tempting to perform a series of t tests, one for each pair of means, but this procedure has a pitfall.

In a t test, we compute a t statistic and compare it to a critical value. The critical value is chosen so that when the means are really the same (any apparent difference is due to random chance), the probability that the t statistic will exceed the critical value is small, say 5%. When the means are different, the probability that the statistic will exceed the critical value is larger.

In this exampletherearefivemeans, sothereare 10 pairs of means to compare. It stands to reason that if all the means are the same, and if we have a 5% chance of incorrectly concluding that there is a difference in one pair, then the probability of making at least one incorrect condusion among all 10 pairs is much larger than 5\%.

Fortunately, there are procedures known as multiple comparison procedures that are designed to compensate for multiple tests.

Example: Multiple Comparisons. You can perform a multiple comparison test using the mul t compar e function and supplying it with the st at s output from anoval.
[$\mathrm{c}, \mathrm{m}]=$ multcompare(stats)

$c=$				
1.0000	2.0000	2.4953	10.5000	18.5047
1.0000	3.0000	4.1619	12.1667	20.1714
1.0000	4.0000	6.6619	14.6667	22.6714
1.0000	5.0000	-2.0047	6.0000	14.0047
2.0000	3.0000	-6.3381	1.6667	9.6714
2.0000	4.0000	-3.8381	4.1667	12.1714
2.0000	5.0000	-12.5047	-4.5000	3.5047
3.0000	4.0000	-5.5047	2.5000	10.5047
3.0000	5.0000	-14.1714	-6.1667	1.8381
4.0000	5.0000	-16.6714	-8.6667	-0.6619
$m=$				
23.8333	1.9273			
13.3333	1.9273			
11.6667	1.9273			
9.1667	1.9273			
17.8333	1.9273			

The first output from mul t compar e has one row for each pair of groups, with an estimate of the difference in group means and a confidence interval for that group. For example, the second row has the values

1. 0000
2. 0000
3. 1619
4. 1667
5. 1714
indicating that the mean of group 1 minus the mean of group 3 is estimated to be 12.1667, and a 95% confidence interval for this difference is [4.1619, 20.1714]. This interval does not contain 0 , so we can conclude that the means of groups 1 and 3 are different.

The second output contains the mean and its standard error for each group.
It is easier to visualize the difference between group means by looking at the graph that mul t compare produces.

The graph shows that group 1 is signifi cantly different from groups 2, 3, and 4. By using the mouse to select group 4, you can determine that it is also significantly different from group 5 . Other pairs are not significantly different.

Two-Way Analysis of Variance (ANOVA)

The purpose of two-way ANOVA is to find out whether data from several groups have a common mean. One-way ANOVA and two-way ANOVA differ in that the groups in two-way ANOVA have two categories of defining characteristics instead of one.

Suppose an automobile company has two factories, and each factory makes the same three models of car. It is reasonable to ask if the gas mileage in the cars varies from factory to factory as well as from model to model. We use two predictors, factory and model, to explain differences in mileage.

There could be an overall difference in mileage due to a difference in the production methods between factories. There is probably a difference in the mil eage of the different models (irrespective of the factory) due to differences in design specifications. These effects are called additive.

Finally, a factory might make high mileage cars in one model (perhaps because of a superior production line), but not be different from the other factory for other models. This effect is called an interaction. It is impossible to detect an interaction unless there are duplicate observations for some combination of factory and car model.
Two-way ANOVA is a special case of the linear model. The two-way ANOVA form of the model is

$$
y_{i j k}=\mu+\alpha_{. j}+\beta_{i .}+\gamma_{i j}+\varepsilon_{i j k}
$$

where, with respect to the automobile example above:

- $\mathrm{y}_{\mathrm{ijk}}$ is a matrix of gas mi leage observations (with row index i , column index j , and repetition index k).
- μ is a constant matrix of the overall mean gas mileage.
- α_{j} is a matrix whose columns are the deviations of each car's gas mileage (from the mean gas mileage μ) that are attributable to the car's model. All values in a given column of $\alpha_{. j}$ are identical, and the values in each row of $\alpha_{, j}$ sum to 0 .
- β_{i} is a matrix whose rows are the deviations of each car's gas mileage (from the mean gas mileage μ) that are attributable to the car's factory. All values in a given row of β_{i}. are identical, and the values in each column of β_{i}. sum to 0.
- γ_{ij} is a matrix of interactions. The values in each row of $\gamma_{i j}$ sum to 0 , and the values in each column of $\gamma_{i j}$ sum to 0 .
- $\varepsilon_{\mathrm{ijk}}$ is a matrix of random disturbances.

The next section provides an example of a two-way analysis.

Example: Two-Way ANOVA

The purpose of the example is to determine the effect of car model and factory on the mil eage rating of cars.
load mil eage mil eage

```
mil eage =
    33.3000 34.5000 37.4000
    33.4000
        34. }800
        36. }800
    32.9000
        33. }800
        37. }600
        32. }600
        33.4000
        36. }600
    32.5000
        33.7000
        37. }000
    33.0000
        33.9000
        36.7000
cars = 3;
[p,tbl,stats] = anova2(m| eage,cars);
p
p =
    0.0000 0.0039 0.8411
```

There are three models of cars (columns) and two factories (rows). The reason there are six rows in mil eage instead of two is that each factory provides three cars of each model for the study. The data from the first factory is in the first three rows, and the data from the second factory is in the last three rows.

The standard ANOVA table has columns for the sums of squares, degrees-of-freedom, mean squares (SS/df), F statistics, and p-values.

- Figure No. 1: Two-way ANOVA					-
File Edit Iools Window Help					
ANOVA Table					
Source	55	df	MS	F	Prob>F \triangle
Columns	53.3511	2	26.6756	234.22	0
Rows	1.445	1	1.445	12.69	0.0039
Interaction	0.04	2	0.02	0.18	0.8411
Error	1.3667	12	0.1139		
Total	56.2028	17			\square

You can use the F statistics to do hypotheses tests to find out if the mileage is the same across models, factories, and model-factory pairs (after adjusting for the additive effects). anova2 returns the p-value from these tests.

The p-value for the model effect is zero to four decimal places. This is a strong indication that the mileage varies from one model to another. An F statistic as extremeas the observed F would occur by chance less than oncein 10,000 times if the gas mileage were truly equal from model to model. If you used the
mul t compare function to perform a multiple comparison test, you would find that each pair of the three models is significantly different.

The p-value for the factory effect is 0.0039 , which is also highly significant. This indicates that one factory is out-performing the other in the gas mileage of the cars it produces. The observed p-value indicates that an F statistic as extreme as the observed F would occur by chance about four out of 1000 times if the gas mileage were truly equal from factory to factory.

There does not appear to be any interaction between factories and models. The p-value, 0.8411 , means that the observed result is quite likely (84 out 100 times) given that there is no interaction.

The p-values returned by anova2 depend on assumptions about the random disturbances $\varepsilon_{i j k}$ in the model equation. For the p-values to be correct these di sturbances need to be independent, normally distributed, and have constant variance. See "Robust and Nonparametric Methods" on page 1-95 for nonparametric methods that do not require a normal distribution.

In addition, anova 2 requires that data be balanced, which in this case means there must be the same number of cars for each combination of model and factory. The next section discusses a function that supports unbalanced data with any number of predictors.

N-Way Analysis of Variance

You can use N-way ANOVA to determine if the means in a set of data differ when grouped by multiple factors. If they do differ, you can determine which factors or combinations of factors are associated with the difference.

N-way ANOVA is a generalization of two-way ANOVA. For three factors, the model can be written

$$
y_{i j k l}=\mu+\alpha_{. j .}+\beta_{i . .}+\gamma_{. . k}+(\alpha \beta)_{i j .}+(\alpha \gamma)_{i . k}+(\beta \gamma)_{. j k}+(\alpha \beta \gamma)_{i j k}+\varepsilon_{i j k l}
$$

In this notation parameters with two subscripts, such as $(\alpha \beta)_{\mathrm{ij}}$, represent the interaction effect of two factors. The parameter $(\alpha \beta \gamma)_{i j k}$ represents the three-way interaction. An ANOVA model can have the full set of parameters or any subset, but conventionally it does not include complex interaction terms unless it also includes all simpler terms for those factors. For example, one would generally not include the three-way interaction without also including all two-way interactions.

The anovan function performs N-way ANOVA. Unlike the anova1 and anova2 functions, anovan does not expect data in a tabular form. Instead, it expects a vector of response measurements and a separate vector (or text array) containing the values corresponding to each factor. This input data format is more convenient than matrices when there are more than two factors or when the number of measurements per factor combination is not constant.

The following examples explore anovan in greater detail:

- "Example: N-Way ANOVA with Small Data Set"
- "Example: N-Way ANOVA with Large Data Set"

Example: N-Way ANO VA with Small Data Set

Consider the following two-way example using anova2.

```
m = [23 15 20;27 17 63;43 3 55;41 9 90]
m}
    23 15 20
    27 17 63
    43 3 55
    41 9 90
```

anova2(m2)
ans $=$
$0.0197 \quad 0.2234 \quad 0.2663$

The factor information is implied by the shape of the matrix mand the number of measurements at each factor combination (2). Although anova2 does not actually require arrays of factor values, for illustrative purposes we could create them as follows.

```
cf actor = repmat(1: 3, 4, 1)
cfactor =
```

$1 \quad 2 \quad 3$
$1 \quad 2 \quad 3$
123
123

```
rfactor = [ones(2,3); 2*ones(2,3)]
rfactor =
\(1 \quad 1 \quad 1\)
\(1 \quad 1 \quad 1\)
    2 2 2
    2 2 2
```

Thecf act or matrix shows that each column of mrepresents a different level of the column factor. Therf act or matrix shows that the top two rows of m represent one level of the row factor, and bottom two rows of mrepresent a second level of the row factor. In other words, each valuem(i, j) represents an observation at column factor level cf act or (i, j) and row factor level cf act or (i, j) .

To solve the above problem with anovan, we need to reshape the matrices m cf act or, and rfact or to be vectors.

```
m=m(:);
cfactor = cfactor(:);
rfactor = rfactor(:);
[m cf actor rfactor]
ans =
\begin{tabular}{rrr}
23 & 1 & 1 \\
27 & 1 & 1 \\
43 & 1 & 2 \\
41 & 1 & 2 \\
15 & 2 & 1 \\
17 & 2 & 1 \\
3 & 2 & 2 \\
9 & 2 & 2 \\
20 & 3 & 1 \\
63 & 3 & 1 \\
55 & 3 & 2 \\
90 & 3 & 2
\end{tabular}
```

```
anovan(m {cfactor rfactor }, 2)
ans =
    0. }019
    0. }223
    0. }266
```


Example: N-Way ANO VA with Large Data Set

In the previous example we used anova2 to study a small data set measuring car mileage. Now we study a larger set of car data with mileage and other information on 406 cars made between 1970 and 1982. First we load the data set and look at the variable names.

```
I oad carbig
```

whos

Name	Si ze	Bytes	Cl ass
Accel erati on	406×1	3248	doubl e array
Cyl inders	406×1	3248	doubl e array
Di spl acement	406×1	3248	doubl e array
Horsepower	406×1	3248	doubl e array
MPG	406×1	3248	doubl e array
Mbdel	406×36	29232	char array
Mbdel_Year	406×1	3248	doubl e array
Ori gin	406×7	5684	char array
Wei ght	406×1	3248	doubl e array
cyl 4	406×5	4060	char array
org	406×7	5684	char array
when	406×5	4060	char array

We will focus our attention on four variables. MPG is the number of miles per gall on for each of 406 cars (though somehave missing values coded as NaN). The other three variables are factors: cyl 4 (four-cylinder car or not), or g (car originated in Europe, J apan, or the USA), and when (car was built early in the period, in the middle of the period, or late in the period).

First we fit the full model, requesting up to three-way interactions and Type 3 sums-of-squares.

```
varnames = {' Ori gi n';'4Cyl';' Mf gDat e' };
anovan(MPG, {org cyl 4 when},3,3, varnames)
ans =
    0. }000
        NaN
        0
    0.7032
    0. }000
    0. }207
    0. }699
```

- Figure No. 1: N-Way ANOVA						
File Edit View Insert Iools Window Help						
Analysis of Variance						
Source	Sum Sq.	d.f.	Mean Sq.	F	Prob>F	\triangle
\# Origin	416.8	1	416.77	29.34	0	
\# 4Cyl	0	0	0	0	NaN	
\# MfgDate	1112.3	1	1112.27	78.31		
\# Origin*4Cyl	2.1	1	2.07	0.15	0.7032	
\# Origin*Mf gDate	301.2	3	100.41	7.07	0.0001	
\# 4Cyl*MfgDate	22.7	1	22.68	1.6	0.2072	
\# Origin*4Cyl*MfgDate	20.3	3	6.77	0.48	0.699	
Error	5411.8	381	14.2			
Total	24252.6	397				\square

Note that many terms are marked by a "\#" symbol as not having full rank, and one of them has zero degrees of freedom and is missing a p-value. This can happen when there are missing factor combinations and the model has higher-order terms. In this case, the cross-tabulation below shows that there are no cars made in Europe during the early part of the period with other than four cylinders, as indicated by the 0 in t abl e($2,1,1$).
[table, fact orval s] = crosstab(org, when, cyl 4)

table $(:,:, 1)$		
82	75	25
0	4	3
3	3	4

t abl e(: , : , 2)	$=$	
12	22	38
23	26	17
12	25	32

factorvals $=$

' USA'	' Early'	' Ot her'
' Europe'	'M d'	' Four'
' Japan'	' Late'	[]

Consequently it is impossibleto estimatethe three-way interaction effects, and including the three-way interaction term in the model makes the fit singular.

Using even the limited information available in the ANOVA table, we can see that thethree-way interaction has a p-value of 0.699 , so it is not significant. We decide to request only two-way interactions this time.
[p, tbl, st at s, ter mvec] = anovan(MPG, \{or g cyl 4 when\}, 2, 3, var names); termec'

Now all terms are estimable. The p-values for interaction term 4 (Ori gi n*4Cyl) and interaction term 6 (4Cyl *Mf gDate) are much larger than a typical cutoff value of 0.05 , indicating these terms are not significant. We could choose to omit theseterms and pool their effects intothe error term. Theoutput ter mec variable returns a vector of codes, each of which is a bit pattern representing a term. We can omit terms from the model by deleting their
entries from ter mec and running anovan again, this time supplying the resulting vector as the model argument.

```
ternvec([4 6]) = []
termvec =
    1
    2
    4
    5
```

anovan(MPG, \{org cyl 4 when\}, termec, 3, varnames)

N Figure No. 2: N-Way ANOVA						-
File Edit View Insert Iools Window Help						
Analysis of Variance						
Source	Sum Sq.	d.f.	Mean Sq	F	Prob>F	Δ
Origin	686.7	2	343.36	24.34	0	
4 Cyl	4206.2	1	4206.17	298.19	0	
Mf gDate	3590.7	2	1795.34	127.28	0	
Origin*MfgDate	336.8	4	84.19	5.97	0.0001	
Error	5473	388	14.11			
Total	24252.6	397				
Constrained (Type III) sums of squares.						

Now we have a more parsimonious model indicating that the mileage of these cars seems to be related to all three factors, and that the effect of the manufacturing date depends on where the car was made.

Multiple Linear Regression

The purpose of multiple linear regression is to establish a quantitative relationship between a group of predictor variables (the columns of X) and a response, y . This relationship is useful for:

- Understanding which predictors have the greatest effect.
- K nowing the direction of the effect (i.e., increasing x increases/decreases y).
- Using the model to predict future values of the response when only the predictors are currently known.

The following sections explain multiple linear regression in greater detail:

- "Mathematical Foundations of Multiple Linear Regression"
- "Example: Multiple Linear Regression"

Mathematical Foundations of Multiple Linear Regression

The linear model takes its common form

$$
y=X \beta+\varepsilon
$$

where:

- y is an n -by-1 vector of observations.
- X is an n-by-p matrix of regressors.
- β is a p-by- 1 vector of parameters.
- ε is an n-by- 1 vector of random disturbances.

The solution to the problem is a vector, b, which estimates the unknown vector of parameters, β. The least squares solution is

$$
b=\hat{\beta}=\left(X^{\top} X\right)^{-1} X^{\top} y
$$

This equation is useful for developing later statistical formulas, but has poor numeric properties. regress uses $Q R$ decomposition of X followed by the backslash operator to compute b. The QR decomposition is not necessary for computing b, but the matrix R is useful for computing confidence intervals.
You can plug b back into the model formula to get the predicted y values at the data points.

$$
\begin{aligned}
& \hat{y}=X b=H y \\
& H=X\left(X^{\top} X\right)^{-1} X^{\top}
\end{aligned}
$$

Statisticians use a hat (circumflex) over a letter to denote an estimate of a parameter or a prediction from a model. The projection matrix H is called the hat matrix, because it puts the "hat" on y.

The residuals are the difference between the observed and predicted y values.

$$
r=y-\hat{y}=(1-H) y
$$

The residuals are useful for detecting failures in the model assumptions, since they correspond to the errors, ε, in the model equation. By assumption, these errors each have independent normal distributions with mean zero and a constant variance.

The residuals, however, are correlated and have variances that depend on the locations of the data points. It is a common practice to scale ("Studentize") the residuals so they all have the same variance.
In the equation below, the scaled residual, t_{i}, has a Student's t distribution with ($n-p-1$) degrees of freedom

$$
t_{i}=\frac{r_{i}}{\hat{\sigma}_{(i)} \sqrt{1-h_{i}}}
$$

where

$$
\hat{\sigma}_{(i)}^{2}=\frac{\|r\|^{2}}{n-p-1}-\frac{r_{i}^{2}}{(n-p-1)\left(1-h_{i}\right)}
$$

and:

- t_{i} is the scaled residual for the ith data point.
- r_{i} is the raw residual for the ith data point.
- n is the sample size.
- p is the number of parameters in the model.
- h_{i} is the ith diagonal element of H.

The left-hand side of the second equation is the estimate of the variance of the errors excluding the ith data point from the calculation.
A hypothesis test for outliers involves comparing t_{i} with the critical values of the t distribution. If t_{i} is large, this casts doubt on the assumption that this residual has the same variance as the others.

A confidence interval for the mean of each error is

$$
c_{i}=r_{i} \pm t_{\left(1-\frac{\alpha}{2}, v\right)} \hat{\sigma}_{(i)} \sqrt{1-h_{i}}
$$

Confidence intervals that do not include zero are equivalent to rejecting the hypothesis (at a significance probability of α) that the residual mean is zero. Such confidence intervals are good evidence that the observation is an outlier for the given model.

Example: Multiple Linear Regression

The example comes from Chatterjee and Hadi (1986) in a paper on regression diagnostics. The data set (originally from M oore (1975)) has five predictor variables and one response.

```
l oad noore
X = [ones(si ze(moore, 1),1) moore(:,1:5)];
```

Matrix X has a column of ones, and then one column of values for each of the five predictor variables. The column of ones is necessary for estimating the y-intercept of the linear model.
y = noore(: , 6);
[b, bint,r,rint,stats] = regress($y, X)$;
The y-intercept is $b(1)$, which corresponds to the column index of the column of ones.
stats
stats =
0. 8107
0. 0001
11. 9886

The elements of the vector st at s are the regression R^{2} statistic, the F statistic (for the hypothesis test that all the regression coefficients are zero), and the p -value associated with this F statistic.
R^{2} is 0.8107 indicating the model accounts for over 80% of the variability in the observations. The F statistic of about 12 and its p-value of 0.0001 indi cate that it is highly unlikely that all of the regression coefficients are zero.

```
rcopl ot (r,rint)
```


The plot shows the residuals plotted in case order (by row). The 95\% confidence intervals about these residuals are plotted as error bars. The first observation is an outlier since its error bar does not cross the zero reference line.

In problems with just a single predictor, it is simpler to use the pol yt ool function (see "The polytool Demo" on page 1-156). This function can form an X matrix with predictor values, their squares, their cubes, and so on.

Quadratic Response Surface Models

Response Surface Methodology (RSM) is a tool for understanding the quantitative relationship between multiple input variables and one output variable.

Consider one output, z, as a polynomial function of two inputs, x and y. The function $z=f(x, y)$ describes a two-dimensional surface in the space (x, y, z). Of course, you can have as many input variables as you want and the resulting surface becomes a hypersurface. You can have multiple output variables with a separate hypersurface for each one.
For three inputs (x_{1}, x_{2}, x_{3}), the equation of a quadratic response surface is

$$
\begin{aligned}
y=b_{0} & +b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}+\ldots & & \text { (linear terms) } \\
& +b_{12} x_{1} x_{2}+b_{13} x_{1} x_{3}+b_{23} x_{2} x_{3}+\ldots & & \text { (interaction terms) } \\
& +b_{11} x_{1}^{2}+b_{22} x_{2}^{2}+b_{33} x_{3}^{2} & & \text { (quadratic terms) }
\end{aligned}
$$

It is difficult to visualize a k-dimensional surface in $k+1$ dimensional space for $k>2$. The function rstool is a graphical user interface (GUI) designed to make this visualization more intuitive, as is discussed in the next section.

Exploring Graphs of Multidimensional Polynomials

The function r st ool is useful for fitting response surface models. The purpose of rst ool is larger than just fitting and prediction for polynomial models. This GUI provides an environment for exploration of the graph of a multidimensional polynomial.

You can learn about rst ool by trying the commands below. The chemistry behind the data in react i on. mat deals with reaction kinetics as a function of
the partial pressure of three chemical reactants: hydrogen, n-pentane, and isopentane.

```
I oad reacti on
rstool (react ants, rate, ' quadr ati c', 0.01, xn, yn)
```

You will see a "vector" of three plots. The dependent variable of all three pl ots is the reaction rate. The first plot has hydrogen as the independent variable. The second and third plots have n-pentane and isopentane respectively.

Each plot shows the fitted relationship of the reaction rate to the independent variable at a fixed value of the other two independent variables. The fixed value of each independent variable is in an editable text box below each axis. You can change the fixed value of any independent variable by either typing a new value in the box or by dragging any of the three vertical lines to a new position.

When you change the value of an independent variable, all the plots update to show the current picture at the new point in the space of the independent variables.

Note that while this example only uses three inputs (reactants) and one output (rate), rst ool can accommodate an arbitrary number of inputs and outputs. Interpretability may be limited by the size of the monitor for large numbers of inputs or outputs.

The GUI also has two pop-up menus. The Export menu facilitates saving various important variables in the GUI to the base workspace. Below the Export menu there is another menu that allows you to change the order of the polynomial model from within the GUI. If you used the commands above, this menu will have the string Full Quadratic. Other choices are:

- Linear - has the constant and first order terms only.
- Pure Quadratic - includes constant, linear and squared terms.
- Interactions - includes constant, linear, and cross product terms.

Therstool GUI is used by the rsmdemo function to visualize the results of a designed experiment for studying a chemical reaction. See "The rsmdemo Demo" on page 1-170.

Stepw ise Regression

Stepwise regression is a technique for choosing the variables to include in a multiple regression model. F orward stepwise regression starts with no model terms. At each step it adds the most statistically significant term (the one with the highest F statistic or lowest p-value) until there are none left. Backward stepwise regression starts with all the terms in the model and removes the least significant terms until all the remaining terms are statistically significant. It is also possible to start with a subset of all the terms and then add significant terms or remove insignificant terms.

An important assumption behind the method is that some input variables in a multiple regression do not have an important explanatory effect on the response. If this assumption is true, then it is a convenient simplification to keep only the statistically significant terms in the model.

One common problem in multipleregression analysis is multicollinearity of the input variables. The input variables may be as correl ated with each other as they are with the response. If this is the case, the presence of one input variable in the model may mask the effect of another input. Stepwise regression used as a canned procedure is a dangerous tool because the resulting model may include different variables depending on the choice of starting model and inclusion strategy.

The following example explores an interactive tool for stepwise regression.

Example: Stepwise Regression

The Statistics Tool box provides an interactive graphical user interface(GUI) to make comparison of competing models more understandable. You can explore the GUI using the Hald (1960) data set. Here are the commands to get started.

I oad hal d
st epwi se(i ngr edi ent s, heat)
The H ald data come from a study of the heat of reaction of various cement mixtures. There are four components in each mixture, and the amount of heat produced depends on the amount of each ingredient in the mixture.

The interface consists of three interactively linked figure windows. Two of these are discussed in the following sections:

- "Stepwise Regression Plot"
- "Stepwise Regression Diagnostics Table"

All three windows have hot regions. When your mouse is above one of these regions, the pointer changes from an arrow to a circle. Clicking on this point initiates some activity in the interface.

Stepwise Regression Plot

This plot shows the regression coefficient and confidence interval for every term (in or out of the model). The green lines represent terms in the model while red lines indicate terms that are not currently in the model.
Statistically significant terms are solid lines. Dotted lines show that the fitted coefficient is not significantly different from zero.

Clicking on a line in this plot toggles its state. That is, a term currently in the model (green line) is removed (turns red), and a term currently not in the model (red line) is added (turns green).

The coefficient for a term out of the model is the coefficient resulting from adding that term to the current model.

Scale Inputs. Pressing this button centers and normalizes the columns of the input matrix to have a standard deviation of one.

Export. This pop-up menu allows you to export variables from the stepwise function to the base workspace.

Close. The Close button removes all the figure windows.

Stepwise Regression Diagnostics Table

This table is a quantitative view of the information in the Stepwise Regression Plot. The tableshows the H ald model with the second and third terms removed.

		Confidence Lowtervals	
Column \#	Parameter	Upper	
1	1.44	1.02	1.86
2	0.4161	-0.1602	0.9924
3	-0.41	-1.029	0.2086
4	-0.614	-0.7615	-0.4664
RMSE	R-square	F	P
2.734	0.9725	176.6	$1.581 \mathrm{e}-08$

Coefficients and Confidence Intervals. The table at the top of the figure shows the regression coefficient and confidence interval for every term (in or out of the model.) The green rows in the table (on your monitor) represent terms in the model while red rows indicate terms not currently in the model.

Clicking on a row in this tabletoggles the state of the corresponding term. That is, a term currently in the model (green row) is removed (turns red), and a term currently not in the model (red row) is added to the model (turns green).

The coefficient for a term out of the model is the coefficient resulting from adding that term to the current model.

Additional Diagnostic Statistics. There are also several diagnostic statistics at the bottom of the table:

- RMSE - the root mean squared error of the current model.
- R-square - the amount of response variability explained by the model.
- F - the overall F statistic for the regression.
- P - the associated significance probability.

Close Button. Shuts down all windows.

Help Button. Activates online help.
Stepwise History. This plot shows the RMSE and a confidence interval for every model generated in the course of the interactive use of the other windows.

Recreating a Previous Model. Clicking on one of these lines recreates the current model at that point in the analysis using a new set of windows. You can thus compare the two candidate models directly.

Generalized Linear Models

So far, the functions in this section have dealt with models that have a linear relationship between the response and one or more predictors. Sometimes you may have a nonlinear relationship instead. To fit nonlinear models you can use the functions described in "N onlinear Regression Models" on page 1-100.

There are some nonlinear models, known as generalized linear models, that you can fit using simpler linear methods. To understand generalized linear models, first let's review the linear models we have seen so far. Each of these models has the following three characteristics:

- The response has a normal distribution with mean μ.
- A coefficient vector b defines a linear combination $X *$ b of the predictors X.
- The model equates the two as $\mu=X *$ b.

In generalized linear models, these characteristics are generalized as follows:

- The response has a distribution that may be normal, binomial, Poisson, gamma, or inverse Gaussian, with parameters including a mean μ.
- A coefficient vector b defines a linear combination $X *$ b of the predictors X.
- A link function $f(\cdot)$ defines the link between the two as $f(\mu)=X *$ b.

The following example explores this in greater detail.

Example: Generalized Linear Models

For example, consider the following data derived from the car bi g data set. We have cars of various weights, and we record the total number of cars of each weight and the number qual ifying as poor-mileage cars because their miles per gall on value is bel ow some target. (Suppose we don't know the miles per gallon for each car, only the number passing the test.) It might be reasonable to
assumethat the value of the variable poor follows a binomial distribution with parameter $\mathrm{N}=\mathrm{t}$ ot al and with a p parameter that depends on the car weight. A pl ot shows that the proportion of poor-mileage cars follows a nonlinear S-shape.

```
w=[2100 2300 2500 2700 2900 3100 3300 3500 3700 3900 4100 4300]';
poor = [1 2 0 3 8 8 14 17 19 15 17 21]';
total =[[\begin{array}{llllllllllllll}{42}&{42}&{31}&{34}&{21}&{23}&{23}&{21}&{17}&{21]';}\end{array};
[w poor total]
ans =
    2100 1 48
    2300 2 42
    2500 0 31
    2700 3 34
    2900 8 31
    3100 8 21
    3300 14 23
    3500 17 23
    3700 19 21
    3900 15 16
    4100 17 17
    4300 21 21
pl ot(w, poor./total,' x')
```


This shape is typical of graphs of proportions, as they have natural boundaries at 0.0 and 1.0.

A linear regression model would not producea satisfactory fit to this graph. Not only would the fitted line not follow the data points, it would produce invalid proportions less than 0 for light cars, and higher than 1 for heavy cars.

There is a class of regression models for dealing with proportion data. The logistic model is one such model. It defines the relationship between proportion p and weight w to be

$$
\log _{\left(\frac{p}{1-p}\right)}=b_{1}+b_{2} w
$$

Is this a good model for our data? It would be hel pful to graph the data on this scale, to see if the relationship appears linear. However, some of our proportions are 0 and 1, so we cannot explicitly evaluate the left-hand-side of the equation. A useful trick is to compute adjusted proportions by adding small increments to the poor and t ot al values - say a half observation to poor and a full observation to tot al. This keeps the proportions within range. A graph now shows a more nearly linear relationship.

```
padj = (poor +. 5) ./ (t ot al +1);
pl ot(w, l og(padj./(1-padj)), ' x' )
```


We can use the gl nfit function to fit this logistic model.

```
b = gl nfit(w,[poor total ],' bi nomial')
b =
    -13. }380
    0. }004
```

To use these coefficients to compute a fitted proportion, we have to invert the logistic relationship. Some simple algebra shows that the logistic equation can also be written as

$$
p=\frac{1}{1+\exp \left(-b_{1}-b_{2} w\right)}
$$

Fortunately, the function gl mal can decode this link function to compute the fitted values. Using this function we can graph fitted proportions for a range of car weights, and superimpose this curve on the original scatter plot.

```
x = 2100: 100: 4500;
y = gl mal (b, x,'logit');
pl ot(w, poor./total,'x',x,y,'r-')
```


Generalized linear models can fit a variety of distributions with a variety of relationships between the distribution parameters and the predictors. A full description is beyond the scope of this document. F or more information see Dobson (1990), or McCullagh and Nelder (1990). Also see the reference material for gl mfit .

Robust and Nonparametric Methods

As mentioned in the previous sections, regression and analysis of variance procedures depend on certain assumptions, such as a normal distribution for the error term. Sometimes such an assumption is not warranted. F or example, if the distribution of the errors is asymmetric or prone to extreme outliers, that is a violation of the assumption of normal errors.

The Statistics Toolbox has a robust regression function that is useful when there may be outliers. Robust methods are designed to be relatively insensitive to large changes in a small part of the data.

The Statistics Tool box also has nonparametric versions of the one-way and two-way analysis of variance functions. Unlike classical tests, nonparametric tests make only mild assumptions about the data, and are appropriate when the distribution of the data is not normal. On the other hand, they are less powerful than classical methods for normally distributed data.

The following sections describe the robust regression and nonparametric functions in greater detail:

- "Robust Regression"
- "Kruskal-Wallis Test"
- "Friedman's Test"

Both of the nonparametric functions described here can return a st at s structure that you can use as input to the mul t compare function to perform multiple comparisons.

Robust Regression

In "Example: Multiple Linear Regression" on page 1-85 we found an outlier when we used ordinary least squares regression to model a response as a function of five predictors. How did that outlier affect the results?

Let's estimate the coefficients using the r obust fit function.
load moore
$x=\operatorname{more}(:, 1: 5)$;
$y=$ moore($:, 6$) ;
[br,statsr] = robustfit(x,y);
br

```
br =
    -1. }774
    0.0000
    0. }000
    0. }000
    0. }006
    0. }000
```

Compare these estimates to those we obtained from the regr ess function.

```
b
b =
    -2. }156
    -0. }000
    0. }001
    0.0001
    0.0079
    0. }000
```

To understand why the two differ, it is hel pful to look at the weight variable from the robust fit. It measures how much weight was given to each point during the fit. In this case, the first point had a very low weight so it was effectively ignored.

```
statsr.w
ans =
    Col umss 1 through 7
```

$0.0577 \quad 0.9977$
0. 9776
0. 9455
0. 9687
0. 8734
0. 9177

```
Col ums 8 through 14
\(0.9990 \quad 0.9653 \quad 0\)
Col ums 15 through 20
```

0. 8185
0.9757
1. 9875
2. 9991
3. 9021
4. 6953

For another example illustrating robust fitting, see "The robustdemo Demo" on page 1-172.

Kruskal-Wallis Test

In "One-Way Analysis of Variance (ANOVA)" on page 1-69 we used one-way analysis of variance to determine if the bacteria counts of milk varied from shipment to shipment. Our one-way analysis rested on theassumption that the measurements were independent, and that each had a normal distribution with a common variance and with a mean that was constant in each column. We concluded that the column means were not all the same. Let's repeat that analysis using a nonparametric procedure.

The Kruskal-Wallis test is a nonparametric version of one-way analysis of variance. The assumption behind this test is that the measurements come from a continuous distribution, but not necessarily a normal distribution. The test is based on an analysis of variance using the ranks of the data values, not the data values themselves. Output includes a table similar to an anova table, and a box plot.

We can run this test as follows.

$$
\begin{aligned}
& p=\text { kruskal wal I is (hogg) } \\
& p=0.0020
\end{aligned}
$$

The low p-value means the K ruskal-Wallis test results agree with the one-way analysis of variance results.

Friedman's Test

In "Two-Way Analysis of Variance (ANOVA)" on page 1-73 we used two-way analysis of variance to study the effect of car model and factory on car mileage. We tested whether either of these factors had a significant effect on mileage, and whether there was an interaction between these factors. We concluded that there was no interaction, but that each individual factor had a significant effect. Now we will see if a nonparametric analysis will lead to the same conclusion.

Friedman's test is a nonparametric test for data having a two-way layout (data grouped by two categorical factors). Unlike two-way analysis of variance, Friedman's test does not treat the two factors symmetrically and it does not test for an interaction between them. Instead, it is a test for whether the columns are different after adjusting for possible row differences. The test is based on an analysis of variance using the ranks of the data across categories of the row factor. Output includes a table similar to an anova table.

We can run F riedman's test as follows.

```
p = fri edman( mil eage, 3)
```

ans $=$
7. $4659 \mathrm{e}-004$

Recall the classical analysis of variance gave a p-value to test column effects, row effects, and interaction effects. This p-value is for column effects. Using either this p-value or the p-value from ANOVA ($p<0.0001$), we conclude that there are significant column effects.

In order to test for row effects, we need to rearrange the data to swap the roles of the rows in columns. For a data matrix x with no replications, we could simply transpose the data and type

$$
p=f r i \operatorname{edman}\left(x^{\prime}\right)
$$

With replicated data it is slightly more complicated. A simple way is to transform the matrix into a three-dimensional array with the first dimension representing the replicates, swapping the other two dimensions, and restoring the two-dimensional shape.

```
x = reshape(mil eage, [ 3 2 3]);
x = permute(x, [lllll
x = reshape(x, [ 9 2])
x =
    33.3000 32.6000
    33.4000 32.5000
    32.9000 33.0000
    34.5000 33.4000
    34.8000 33.7000
    33.8000 33.9000
    37.4000 36.6000
    36.8000 37.0000
    37.6000 36.7000
friedman(x, 3)
ans =
    0. }008
```

Again, the conclusion is similar to the conclusion from the classical analysis of variance. B oth this p-value and the one from ANOVA ($p=0.0039$) lead us to conclude there are significant row effects.

You cannot use F riedman's test to test for interactions between the row and column factors.

Nonlinear Regression Models

Response Surface M ethodology (RSM) is an empirical modeling approach using polynomials as local approximations tothetrueinput/output relationship. This empirical approach is often adequate for process improvement in an industrial setting.

In scientific applications there is usually relevant theory that allows us to make a mechanistic model. Often such models are nonlinear in the unknown parameters. Nonlinear models are more difficult to fit, requiring iterative methods that start with an initial guess of the unknown parameters. Each iteration alters the current guess until the algorithm converges.

The Statistics Tool box has functions for fitting nonlinear models of the form

$$
y=f(X, \beta)+\varepsilon
$$

where:

- y is an-n by-1 vector of observations.
- f is any function of X and β.
- X is an n-by-p matrix of input variables.
- β is a p-by-1 vector of unknown parameters to be estimated.
- ε is an n-by- 1 vector of random disturbances.

This is explored further in the following example.

Example: Nonlinear Modeling

The Hougen-Watson model (Bates and Watts 1988) for reaction kinetics is one specific example of this type. The form of the model is

$$
\text { rate }=\frac{\beta_{1} \cdot x_{2}-x_{3} / \beta_{5}}{1+\beta_{2} \cdot x_{1}+\beta_{3} \cdot x_{2}+\beta_{4} \cdot x_{3}}
$$

where $\beta_{1}, \beta_{2}, \ldots, \beta_{5}$ are the unknown parameters, and x_{1}, x_{2}, and x_{3} are the three input variables. The three inputs are hydrogen, n-pentane, and isopentane. It is easy to see that the parameters do not enter the model linearly.

The file r eact i on. mat contains simulated data from this reaction.

```
I oad reacti on
who
Your variabl es are:
\begin{tabular}{lll} 
bet a & rate & \(x n\) \\
model & reactants & \(y n\)
\end{tabular}
```

The variables are as follows:

- rate is a 13-by-1 vector of observed reaction rates.
- react ants is a 13-by-3 matrix of reactants.
- bet a is 5-by-1 vector of initial parameter estimates.
- model is a string containing the nonlinear function name.
- $x n$ is a string matrix of the names of the reactants.
- yn is a string containing the name of the response.

The data and model are explored further in the following sections:

- "Fitting the Hougen-Watson Model"
- "Confidence Intervals on the Parameter Estimates"
- "Confidence Intervals on the Predicted Responses"
- "An Interactive GUI for Nonlinear Fitting and Prediction"

Fitting the Hougen-Watson Model

The Statistics Toolbox provides the function nl inf it for finding parameter estimates in nonlinear modeling. nl i nf i t returns the least squares parameter estimates. That is, it finds the parameters that minimize the sum of the squared differences between the observed responses and their fitted values. It uses the Gauss-N ewton algorithm with Levenberg-Marquardt modifications for global convergence.
nl i nf it requires the input data, the responses, and an initial guess of the unknown parameters. Y ou must also supply the name of a function that takes the input data and the current parameter estimate and returns the predicted responses. In MATLAB terminology, nl i nf it is called a "function" function.

```
Here is the hougen function.
    functi on yhat = hougen(beta, x)
    %HOUGEN Hougen- Watson model for reacti on ki netics.
    % YHAT = HOUGEN(BETA, X) gi ves the predicted val ues of the
    % reaction rate, YHAT, as a function of the vector of
    % parameters, BETA, and the matrix of data, X.
    % BETA most have five el ements and X must have three
    % col umms.
    %
    % The model formis:
    % y = (b1*x2 - x3/b5)./( 1+b2*x1+b3*x2+b4*x3)
    b1 = bet a(1);
    b2 = beta(2);
    b3 = beta(3);
    b4 = beta(4);
    b5 = bet a(5);
    x1 = x(:, 1);
    x2 = x(:, 2);
    x3 = x(:, 3);
    yhat =(b1*x2 - x3/b5)./( 1+b2*x1+b3*x2+b4*x3);
To fit the react i on data, call the function nl i nf it .
    l oad reacti on
    bet ahat = nl i nfit(react ants,rate,' hougen', beta)
    bet ahat =
        1. }252
        0. }062
        0. }040
        0. }112
        1. }191
```

nl i nf it has two optional outputs. They are the residuals and J acobian matrix at the solution. The residuals are the differences between the observed and fitted responses. TheJ acobian matrix is the direct analog of the matrix X in the standard linear regression model.

These outputs are useful for obtaining confidence intervals on the parameter estimates and predicted responses.

Confidence Intervals on the Parameter Estimates

Using nl parci , form 95\% confidence intervals on the parameter estimates, bet ahat, from the reaction kinetics example.
[bet ahat, resid, J] = nlinfit(reactants, rate, ' hougen', bet a); bet aci $=$ nl parci (bet ahat, resid, J)
bet aci =
$\begin{array}{ll}-0.7467 & \text { 3. } 2519\end{array}$
$-0.0377 \quad 0.1632$
$-0.0312 \quad 0.1113$
-0. $0609 \quad 0.2857$

- 0.7381

3. 1208

Confidence Intervals on the Predicted Responses

Using nl pr edci , form 95\% confidence intervals on the predicted responses from the reaction kinetics example.

```
[yhat,del ta] = nl predci(' hougen',react ants,bet ahat,resi d,J);
opd = [rate yhat delta]
opd =
\begin{tabular}{rrr}
8.5500 & 8.2937 & 0.9178 \\
3.7900 & 3.8584 & 0.7244 \\
4.8200 & 4.7950 & 0.8267 \\
0.0200 & -0.0725 & 0.4775 \\
2.7500 & 2.5687 & 0.4987 \\
14.3900 & 14.2227 & 0.9666 \\
2.5400 & 2.4393 & 0.9247 \\
4.3500 & 3.9360 & 0.7327 \\
13.0000 & 12.9440 & 0.7210 \\
8.5000 & 8.2670 & 0.9459 \\
0.0500 & -0.1437 & 0.9537 \\
11.3200 & 11.3484 & 0.9228 \\
3.1300 & 3.3145 & 0.8418
\end{tabular}
```

Matrix opd has theobserved rates in column 1 and the predictions in column 2. The 95% confidence interval is column $2 \pm$ column 3 . These are simultaneous confidence intervals for the estimated function at each input value. They are not intervals for new response observations at those inputs, even though most of the confidence intervals do contain the original observations.

An Interactive G UI for Nonlinear Fitting and Prediction

The function nl int ool for nonlinear models is a direct analog of r st ool for polynomial models. nl int ool calls nl i nf i t and requires the same inputs.

The purpose of nl i nt ool is larger than just fitting and prediction for nonlinear models. This GUI provides an environment for exploration of the graph of a multidimensional nonlinear function.

If you have already loaded react i on. mat, you can start nl int ool .
nl i nt ool (react ants, rate, ' hougen' , bet a, 0.01, xn, yn)
You will see a "vector" of three plots. The dependent variable of all three plots is the reaction rate. The first plot has hydrogen as the independent variable. The second and third plots have n-pentane and isopentane respectively.

Each plot shows the fitted relationship of the reaction rate to the independent variable at a fixed value of the other two independent variables. The fixed value of each independent variable is in an editable text box below each axis. You can change the fixed value of any independent variable by either typing a new value in the box or by dragging any of the three vertical lines to a new position.

When you change the value of an independent variable, all the plots update to show the current picture at the new point in the space of the independent variables.

Note that while this example only uses three reactants, nl i nt ool can accommodate an arbitrary number of independent variables. Interpretability may be limited by the size of the monitor for large numbers of inputs.

Hypothesis Tests

A hypothesis test is a procedure for determining if an assertion about a characteristic of a population is reasonable.

For example, suppose that someone says that the average price of a gallon of regular unleaded gas in Massachusetts is $\$ 1.15$. How would you decide whether this statement is true? Y ou could try to find out what every gas station in the state was charging and how many gallons they were selling at that price. That approach might be definitive, but it could end up costing more than the information is worth.

A simpler approach is tofind out the price of gas at a small number of randomly chosen stations around the state and compare the average price to $\$ 1.15$.

Of course, the average price you get will probably not be exactly $\$ 1.15$ due to variability in price from one station to the next. Suppose your average price was $\$ 1.18$. Is this three cent difference a result of chance variability, or is the original assertion incorrect? A hypothesis test can provide an answer.

The following sections provide an overview of hypothesis testing with the Statistics Toolbox:

- "Hypothesis Test Terminol ogy"
- "Hypothesis Test Assumptions"
- "Example: Hypothesis Testing"
- "Available Hypothesis Tests"

Hypothesis Test Terminology

To get started, there are some terms to define and assumptions to make:

- The null hypothesis is the original assertion. In this case the null hypothesis is that the average price of a gallon of gas is $\$ 1.15$. The notation is $\mathrm{H}_{0}: \mu=1.15$.
- There are three possibilities for the alternativehypothesis. You might only be interested in the result if gas prices were actually higher. In this case, the alternative hypothesis is $\mathrm{H}_{1}: \mu>1.15$. The other possibilities are $\mathrm{H}_{1}: \mu<1.15$ and $\mathrm{H}_{1}: \mu \neq 1.15$.
- Thesignificancelevel is related to the degree of certainty you requirein order to reject the null hypothesis in favor of the alternative. By taking a small
sample you cannot be certain about your conclusion. So you decide in advance to reject the null hypothesis if the probability of observing your sampled result is less than the significance level. F or a typical significance level of 5%, the notation is $\alpha=0.05$. F or this significance level, the probability of incorrectly rejecting the null hypothesis when it is actually true is 5%. If you need more protection from this error, then choose a lower value of α.
- The p-valueis the probability of observing the given sample result under the assumption that the null hypothesis is true. If thep-valueisless than α, then you reject the null hypothesis. For example, if $\alpha=0.05$ and the p-value is 0.03 , then you reject the null hypothesis.

The converse is not true. If the p-value is greater than α, you have insufficient evidence to reject the null hypothesis.

- The outputs for many hypothesis test functions also include confidence intervals. Loosely speaking, a confidence interval is a range of values that have a chosen probability of containing the true hypothesized quantity. Suppose, in our example, 1.15 is inside a 95% confidence interval for the mean, μ. That is equivalent to being unable to reject the null hypothesis at a significance level of 0.05 . Conversely if the 100(1- α) confidence interval does not contain 1.15, then you reject the null hypothesis at the α level of significance.

Hypothesis Test Assumptions

The difference between hypothesis test procedures often arises from differences in the assumptions that the researcher is willing to make about the data sample. For example, the Z-test assumes that the data represents independent samples from the same normal distribution and that you know the standard deviation, σ. The t-test has the same assumptions except that you estimate the standard deviation using the data instead of specifying it as a known quantity.

Both tests have an associated signal-to-noise ratio

$$
\begin{aligned}
& Z=\frac{\bar{x}-\mu}{\sigma} \quad \text { or } \quad T=\frac{\bar{x}-\mu}{s} \\
& \text { where } x=\sum_{i=1}^{n} \frac{x_{i}}{n}
\end{aligned}
$$

The signal is the difference between the average and the hypothesized mean. The noise is the standard deviation posited or estimated.

If the null hypothesis is true, then Z has a standard normal distribution, $N(0,1)$. T has a Student's t distribution with the degrees of freedom, v, equal to one less than the number of data values.

Given the observed result for Z or T, and knowing the distribution of Z and T assuming the null hypothesis is true, it is possible to compute the probability (p-value) of observing this result. A very small p-value casts doubt on the truth of the null hypothesis. For example, suppose that the p-value was 0.001 , meaning that the probability of observing the given Z or T was one in a thousand. That should make you skeptical enough about the null hypothesis that you reject it rather than believe that your result was just a lucky 999 to 1 shot.

There are also nonparametric tests that do not even require the assumption that the data come from a normal distribution. In addition, there are functions for testing whether the normal assumption is reasonable.

Example: Hypothesis Testing

This example uses the gasoline price data in gas. mat. There are two samples of 20 observed gas prices for the months of J anuary and February, 1993.

I oad gas
prices $=$ [pricel price2];
As a first step, you may want to test whether the samples from each month follow a normal distribution. As each sample is relatively small, you might choose to perform a Lilliefors test (rather than a Bera-J arque test):
lilliet est(pricel)
ans $=$
0
I illiet est price2)
ans $=$
0

The result of the hypothesis test is a Boolean value that is 0 when you do not reject the null hypothesis, and 1 when you do reject that hypothesis. In each case, there is no need to reject the null hypothesis that the samples have a normal distribution.

Suppose it is historically true that the standard deviation of gas prices at gas stations around Massachusetts is four cents a gallon. TheZ-test is a procedure for testing the null hypothesis that the average price of a gallon of gas in J anuary (pricel) is \$1.15.

```
[ h, pval ue, ci ] = zt est( pri ce1/ 100, 1. 15, 0. 04)
h =
    0
pval ue =
    0. }866
ci =
```

1. $1340 \quad 1.1690$

The Boolean output is $\mathrm{h}=0$, so you do not reject the null hypothesis.
The result suggests that $\$ 1.15$ is reasonable. The 95% confidence interval [1. 1340 1. 1690] neatly brackets $\$ 1.15$.

What about February? Try a t-test with pri ce2. Now you are not assuming that you know the standard deviation in price.

```
[h, pval ue, ci ] = ttest(price2/ 100, 1. 15)
h =
    1
pval ue =
    4. 9517e- 04
ci =
    1. }1675\mathrm{ 1. }202
```

With the Boolean result $\mathrm{h}=1$, you can reject the null hypothesis at the default significance level, 0.05.

It looks like $\$ 1.15$ is not a reasonable estimate of the gasoline price in February. The low end of the 95\% confidence interval is greater than 1.15.

The function t test 2 allows you to compare the means of the two data samples.

```
[h, si g, ci ] = ttest2(price1, price2)
h =
    1
si g =
    0.0083
ci =
```

-5. $7845-0.9155$
The confidence interval (ci above) indicates that gasoline prices were between one and six cents lower in J anuary than February.

If the two samples were not normally distributed but had similar shape, it would have been more appropriate to use the nonparametric rank sum test in place of thet-test. We can still use the rank sum test with normally distributed data, but it is less powerful than the t-test.

```
[ \(\mathrm{p}, \mathrm{h}\), st at s\(]=\) ranksum( price1, price2)
\(\mathrm{p}=\)
    0. 0092
\(\mathrm{h}=\)
    1
stats =
    zval: - 2. 6064
    ranksum 314
```

As might be expected, the rank sum test leads to the same conclusion but it is less sensitive to the difference between samples (higher p-value).

The box plot below gives the same conclusion graphically. Note that the notches have little, if any, overlap. Refer to "Statistical Plots" on page 1-128 for more information about box plots.

```
boxpl ot ( pri ces, 1)
set(gca,' Xti ckLabel ', str 2mat('J anuary',' February' ))
xl abel(' Mbnth')
yl abel('Pri ces ($0.01)')
```


Available Hypothesis Tests

The Statistics Toolbox has functions for performing the following tests.

Function	What it Tests
j bt est	Normal distribution for one sample
kst est	Any specified distribution for one sample
kstest 2	Equal distributions for two samples
I i I I i et est	Normal distribution for one sample
ranksum	Median of two unpaired samples
si gnrank	Median of two paired samples
si gnt est	Median of two paired samples
ttest	Mean of one normal sample
ttest 2	Mean of two normal samples
ztest	Mean of normal sample with known standard deviation

Multivariate Statistics

Multivariate statistics is an omnibus term for a number of different statistical methods. The defining characteristic of these methods is that they all aim to understand a data set by considering a group of variables together rather than focusing on only one variable at a time.

The Statistics Tool box has functions for principal components analysis (pri ncomp), multivariate analysis of variance (manova1), and linear discriminant analysis (cl assi fy). Thefollowing sectionsillustratethefirst two functions:

- "Principal Components Analysis"
- "Multivariate Analysis of Variance (MANOVA)"

Principal Components Analysis

One of the difficulties inherent in multivariate statistics is the problem of visualizing multidimensionality. In MATLAB, the pl ot command displays a graph of the relationship between two variables. The pl ot 3 and surf commands display different three-dimensional views. When there are more than three variables, it stretches the imagination to visualize their relationships.

Fortunately, in data sets with many variables, groups of variables often move together. One reason for this is that more than one variable may be measuring the same driving principle governing the behavior of the system. In many systems there are only a few such driving forces. But an abundance of instrumentation al lows us to measure dozens of system variables. When this happens, we can take advantage of this redundancy of information. We can simplify our problem by replacing a group of variables with a single new variable.

Principal components analysis is a quantitatively rigorous method for achieving this simplification. The method generates a new set of variables, called principal components. E ach principal component is a linear combination of the original variables. All the principal components are orthogonal to each other so there is no redundant information. The principal components as a whole form an orthogonal basis for the space of the data.

There are an infinite number of ways to construct an orthogonal basis for several columns of data. What is so special about the principal component basis?

The first principal component is a single axis in space. When you project each observation on that axis, the resulting values form a new variable. And the variance of this variable is the maximum among all possible choices of the first axis.

The second principal component is another axis in space, perpendicular to the first. Projecting the observations on this axis generates another new variable. The variance of this variable is the maximum among all possible choices of this second axis.

The full set of principal components is as large as the original set of variables. But it is commonplace for the sum of the variances of the first few principal components to exceed 80% of the total variance of the original data. By examining plots of these few new variables, researchers often develop a deeper understanding of the driving forces that generated the original data.

The following section provides an example.

Example: Principal Components A nalysis

Let us look at a sample application that uses nine different indices of the quality of life in 329 U.S. cities. These are climate, housing, health, crime, transportation, education, arts, recreation, and economics. F or each index, higher is better; so, for example, a higher index for crime means a lower crime rate.

We start by loading the data in ci ti es. mat.
I oad cities
whos

Name	Si ze	Bytes	Cl ass
cat egories	9×14	252	char array
names	329×43	28294	char array
ratings	329×9	23688	doubl e array

The whos command generates a table of information about all the variables in the workspace.

The cities data set contains three variables:

- cat egori es, a string matrix containing the names of the indices.
- names, a string matrix containing the 329 city names.
- rati ngs, the data matrix with 329 rows and 9 columns.

Let's look at the value of the cat egori es variable.

```
cat egori es
```

categori es =
climate
housi ng
heal th
crime
transportation
education
arts
recreation
economics
Now, let's look at the first several rows of names variable.

```
first5 = names(1:5,:)
```

first5 $=$

Abilene, TX
Akr on, OH
Al bany, GA
Al bany-Troy, NY
Al buquer que, NM
To get a quick impression of the ratings data, make a box plot.

```
boxpl ot (rati ngs, 0, ' +', 0)
set ( gca, ' YTi ckl abel ' , cat egori es)
```

These commands generate the plot below. N otethat there is substantially more variability in the ratings of the arts and housing than in the ratings of crime and climate.

Ordinarily you might also graph pairs of the original variables, but there are 36 two-variable plots. Perhaps principal components analysis can reduce the number of variables we need to consider.

Sometimes it makes sense to compute principal components for raw data. This is appropriate when all the variables are in the same units. Standardizing the data is reasonable when the variables are in different units or when the variance of the different columns is substantial (as in this case).

You can standardize the data by dividing each column by its standard deviation.

```
stdr = std(ratings);
sr = ratings./repmat(stdr, 329,1);
```

Now we are ready to find the principal components.
[pcs, newdat a, vari ances, t2] = princomp(sr);
The following sections explain the four outputs from pri ncomp:

- "The Principal Components (First Output)"
- "The Component Scores (Second Output)"
- "The Component Variances (Third Output)"
- "H otelling's T2 (Fourth Output)"

The Principal Components (First O utput)

The first output of the pri ncomp function, pcs, contains the nine principal components. These are the linear combinations of the original variables that generate the new variables.
Let's look at the first three principal component vectors.

```
p3 = pcs(:, 1: 3)
p3 =
```

0. $2064 \quad 0.2178-0.6900$
1. 3565
2. 2506
-0. 2082
3. 4602
-0. 2995
-0. 0073
4. 2813
5. 3553
6. 1851
7. 3512
-0. 1796
8. 1464
9. 2753
-0. $4834 \quad 0.2297$
0.4631
-0. 1948

- 0.0265

0. 3279
1. 3845

- 0.0509

0. 1354
1. 4713
2. 6073

Thelargest weights in thefirst column (first principal component) arethe third and seventh elements, corresponding to the variables heal $t h$ and arts. All the elements of the first principal component are the same sign, making it a weighted average of all the variables.
To show the orthogonality of the principal components, note that premultiplying them by their transpose yields the identity matrix.

```
I = p3' *p3
| =
```

1.0000	-0.0000	-0.0000
-0.0000	1.0000	-0.0000
-0.0000	-0.0000	1.0000

The Component Scores (Second Output)

The second output, newdat a, is the data in the new coordinate system defined by the principal components. This output is the same size as the input data matrix.

A plot of the first two columns of newdat a shows the ratings data projected onto the first two principal components.

```
pl ot ( newdat a(: , 1), newdat a(: , 2) ,' +' )
xl abel('1st Princi pal Component');
yl abel('2nd Princi pal Component');
```


Note the outlying points in the lower right corner.
The function gname is useful for graphically identifying a few points in a plot like this. You can call gname with a string matrix containing as many case labels as points in the plot. The string matrix names works for labeling points with the city names.

```
gname(names)
```

Move your cursor over the plot and click once near each point at the top right. As you click on each point, MATLAB labels it with the proper row from the names string matrix. When you are finished labeling points, press the Return key.

Here is the resulting plot.

The labeled cities are the biggest population centers in the U nited States. Perhaps we should consider them as a completely separate group. If we call gname without arguments, it labels each point with its row number.

We can create an index variable containing the row numbers of all the metropol itan areas we chose.

```
metro = [43 65 179 213 234 270 314];
names(metro,:)
ans =
Boston, MA
Chi cago, IL
Los Angel es, Long Beach, CA
New York, NY
Phi I adel phi a, PA- NJ
San Franci sco, CA
Washi ngt on, DC-MD- VA
```

To remove these rows from the ratings matrix, type the following.
rsubset = ratings;
nsubset = names;
nsubset (metro,:) = [];
rsubset(metro,:) = [];
si ze(rsubset)
ans =
3229

To practice, repeat the analysis using the variable r subset as the new data matrix and nsubset as the string matrix of labels.

The Component Variances (Third O utput)

The third output, vari ances, is a vector containing the variance explained by the corresponding column of newdat a.

```
vari ances
variances =
3. 4083
1. 2140
1. 1415
0. 9209
0.7533
0. 6306
0. 4930
0. 3180
0. 1204
```

You can easily cal culate the percent of the total variability explained by each principal component.

```
percent_expl ai ned = 100*vari ances/ sum( vari ances)
percent_expl ai ned =
```

37. 8699
38. 4886
39. 6831
40. 2324
41. 3698
42. 0062
43. 4783
44. 5338
45. 3378

A "Scree" plot is a pareto plot of the percent variability explained by each principal component.

```
par et o( percent_expl ai ned)
xl abel('Principal Component')
yl abel('Vari ance Expl ai ned ( }%\mathrm{ '')
```


We can see that the first three principal components explain roughly twothirds of the total variability in the standardized ratings.

Hotelling's \mathbf{T}^{2} (Fourth Output)

The last output of the pri inconp function, t 2 , is Hotelling's T^{2}, a statistical measure of the multivariate distance of each observation from the center of the data set. This is an analytical way to find the most extreme points in the data.

```
[st2, index] = sort(t2); %Sort in ascending order.
st2 = fli pud(st2); %Val ues in descending order.
i ndex = fli pud(i ndex); %Indi ces in descendi ng order.
extreme = i ndex(1)
extrem巴 =
    2 1 3
names(extreme,:)
ans =
New York, NY
```

It is not surprising that the ratings for New York are the furthest from the average U.S. town.

Multivariate Analysis of Variance (MANOVA)

We reviewed the analysis of variance technique in "One-Way Analysis of Variance (ANOVA)" on page 1-69. With this technique we can take a set of grouped data and determine whether the mean of a variable differs significantly between groups. Often we have multiple variables, and we are interested in determining whether the entire set of means is different from one group to the next. There is a multivariate version of analysis of variance that can address that problem, as illustrated in the following example.

Example: Multivariate Analysis of Variance

The carsmal I data set has measurements on a variety of car models from the years 1970, 1976, and 1982. Suppose we are interested in whether the characteristics of the cars have changed over time.

First we load the data.
I oad car smal I
whos

Name	Size	Byt es \quad Cl ass	
Accel erati on	100×1	800	doubl e array
Cyl inders	100×1	800	doubl e array
Di spl acement	100×1	800	doubl e array
Horsepower	100×1	800	doubl e array
MPG	100×1	800	doubl e array
Mbdel	100×36	7200	char array
Mbdel_Year	100×1	800	doubl e array
Ori gin	100×7	1400	char array
Wei ght	100×1	800	doubl e array

Four of these variables (Accel er ati on, Di spl acement, Hor sepower, and MPG) are continuous measurements on individual car models. The variable Mbdel_Year indicates the year in which the car was made. We can create a grouped plot matrix of these variables using the gpl ot mat ri x function.
x = [MPG Horsepower Di spl acement Wei ght];
gpl ot matrix(x, [], Mbdel _Year, [], ' + xo ')

(When the second argument of gpl ot matri x is empty, the function graphs the columns of thex argument against each other, and places histograms along the diagonals. The empty fourth argument produces a graph with the default colors. The fifth argument controls the symbols used to distinguish between groups.)

It appears the cars do differ from year to year. The upper right plot, for example, is a graph of MPG versus Wei ght. The 1982 cars appear to have higher mileage than the older cars, and they appear to weigh less on average. But as a group, are the three years significantly different from one another? The manoval function can answer that question.
[d, p, st at s] = nmnoval(x, Mbdel_Year)
$\mathrm{d}=$
2
$\mathrm{p}=$

1. Oe- 006 *

0
0. 1141

```
stats =
            W [ 4x4 doubl e]
            B: [ 4x4 doubl e]
            T: [ 4x4 doubl e]
            df W 90
            df B: 2
            df T: 92
    I anbda: [2x1 double]
    chi sq: [ 2x1 doubl e]
    chi sqdf: [ 2x1 doubl e]
    ei genval : [ 4x1 doubl e]
    ei genvec: [ 4x4 doubl e]
    canon: [ 100x4 doubl e]
    mdi st: [ 100x1 doubl e]
    gmdi st: [ 3x3 doubl e]
```

The manoval function produces three outputs:

- The first output, d, is an estimate of the dimension of the group means. If the means were all the same, the dimension would be 0 , indicating that the means are at the same point. If the means differed but fell along a line, the dimension would be 1 . In the examplethe dimension is 2 , indicating that the group means fall in a plane but not al ong a line. This is the largest possible dimension for the means of three groups.
- The second output, p, is a vector of p-values for a sequence of tests. The first p-value tests whether the dimension is 0 , the next whether the dimension is 1 , and so on. In this case both p-values are small. That's why theestimated dimension is 2.
- The third output, st at s, is a structure containing several fields, described in the following section.

The Fields of the stats Structure. The W B, and T fields are matrix analogs to the within, between, and total sums of squares in ordinary one-way analysis of variance. The next three fields are the degrees of freedom for these matrices. Fields I ambda, chi sq, and chi sqdf are the ingredients of the test for the dimensionality of the group means. (The p-values for these tests are the first output argument of manova1.)

The next three fields are used to do a canonical analysis. Recall that in principal components analysis ("Principal Components Analysis" on
page 1-112) we look for the combination of the original variables that has the largest possible variation. In multivariate analysis of variance, we instead look for the linear combination of the original variables that has the largest separation between groups. It is the single variable that would give the most significant result in a univariate one-way analysis of variance. Having found that combination, we next look for the combination with the second highest separation, and so on.
The ei genvec field is a matrix that defines the coefficients of the linear combinations of the original variables. The ei genval field is a vector measuring the ratio of the between-group variance to the within-group variance for the corresponding linear combination. The canon field is a matrix of the canonical variable values. Each column is a linear combination of the mean-centered original variables, using coefficients from the ei genvec matrix.

A grouped scatter pl ot of the first two canonical variables shows more separation between groups then a grouped scatter plot of any pair of original variables. In this exampleit shows three clouds of points, overlapping but with distinct centers. One point in the bottom right sits apart from the others. By using the gname function, we can see that this is the 20th point.

```
c1 = stats.canon(:, 1);
c2 = stats.canon(:, 2);
gscatter(c2, c1, Mbdel _Year, [],' oxs')
gname
```


Roughly speaking, the first canonical variable, c1, separates the 1982 cars (which have high values of c1) from the older cars. The second canonical variable, c2, reveals some separation between the 1970 and 1976 cars.

The final two fields of the st at structure are Mahalanobis distances. The modi st field measures the distance from each point to its group mean. Points with large values may be outliers. In this data set, the largest outlier is the one we saw in the scatter plot, the Buick Estatestation wagon. (Note that we could havesupplied the model name to thegname function above if we wanted tolabel the point with its model name rather than its row number.)

```
max(stat s. ndi st)
ans =
```

31. 5273
find(stats. madist $=$ ans)
ans $=$
20
Mbdel (20, :)
ans =
bui ck_est at e_wagon_(sw)

The grdi st field measures the distances between each pair of group means. The following commands examine the group means and their distances:

```
grpstats(x, Mbdel _Year)
ans =
    1. 0e+003 *
\begin{tabular}{llll}
0.0177 & 0.1489 & 0.2869 & 3.4413 \\
0.0216 & 0.1011 & 0.1978 & 3.0787 \\
0.0317 & 0.0815 & 0.1289 & 2.4535
\end{tabular}
stats.gmdi st
ans =
            0 3.8277 11.1106
            3. }8277\quad0\quad6.137
            11. 1106 6. }137
            0
```

As might be expected, the multivariate distance between the extreme years 1970 and 1982 (11.1) is larger than the difference between more closely spaced years (3.8 and 6.1). This is consistent with the scatter plots, where the points seem to follow a progression as the year changes from 1970 through 1976 to 1982. If we had more groups, we might have found it instructive to use the nanovacl uster function to draw a diagram that presents clusters of the groups, formed using the distances between their means.

Statistical Plots

The Statistics Tool box adds specialized plots to the extensive graphics capabilities of MATLAB.

- Box plots are graphs for describing data samples. They are al so useful for graphic comparisons of the means of many samples (see "One-Way Analysis of Variance (ANOVA)" on page 1-69).
- Distribution plots are graphs for visualizing the distribution of one or more samples. They include normal and Weibull probability plots, quantile-quantile plots, and empirical cumulative distribution plots.
- Scatter plots are graphs for visualizing the relationship between a pair of variables or several such pairs. Grouped versions of these plots use different plotting symbol s to indi cate group membership. The gname function can label points on these plots with a text label or an observation number.

The plot types are described further in the following sections:

- "Box Plots"
- "Distribution Plots"
- "Scatter Plots"

Box Plots

The graph shows an example of a notched box plot.

This pl ot has several graphic elements:

- The lower and upper lines of the "box" are the 25th and 75th percentiles of the sample. The distance between the top and bottom of the box is the interquartile range.
- The line in the middle of the box is the sample median. If the median is not centered in the box, that is an indication of skewness.
- The "whiskers" are lines extending above and below the box. They show the extent of the rest of the sample (unless there are outliers). Assuming no outliers, the maximum of the sample is the top of the upper whisker. The minimum of the sample is the bottom of the lower whisker. By default, an outlier is a value that is more than 1.5 times the interquartile range away from the top or bottom of the box.
- The plus sign at the top of the plot is an indication of an outlier in the data. This point may be the result of a data entry error, a poor measurement or a change in the system that generated the data.
- The notches in the box are a graphic confidence interval about the median of a sample. Box plots do not have notches by default.

A side-by-side comparison of two notched box plots is the graphical equivalent of a t-test. See "Hypothesis Tests" on page 1-105.

Distribution Plots

There are several types of plots for examining the distribution of one or more samples, as described in the following sections:

- "Normal Probability Plots"
- "Quantile-Quantile Plots"
- "Weibull Probability Plots"
- "Empirical Cumulative Distribution Function (CDF)"

Normal Probability Plots

A normal probability plot is a useful graph for assessing whether data comes from a normal distribution. Many statistical procedures make the assumption that the underlying distribution of the data is normal, so this plot can provide some assurance that the assumption of normality is not being violated, or provide an early warning of a problem with your assumptions.

This example shows a typical normal probability plot.

```
x = normmd(10, 1, 25, 1);
nor mpl ot (x)
```


The plot has three graphical elements. The plus signs show the empirical probability versus the data value for each point in the sample. The solid line connects the 25th and 75th percentiles of the data and represents a robust linear fit (i.e., insensitive to the extremes of the sample). The dashed line extends the solid line to the ends of the sample.

The scale of the y-axis is not uniform. The y-axis values are probabilities and, as such, go from zero to one. The distance between the tick marks on the y-axis matches the distance between the quantiles of a normal distribution. The quantiles are closetogether near themedian (probability $=0.5$) and stretch out symmetrically moving away from the median. Compare the vertical distance from the bottom of the pl ot to the probability 0.25 with the distance from 0.25 to 0.50. Similarly, compare the distance from the top of the plot to the probability 0.75 with the distance from 0.75 to 0.50 .

If all the data points fall near the line, the assumption of normality is reasonable. But, if the data is nonnormal, the plus signs may follow a curve, as in the example using exponential data below.

```
x = exprnd(10,100, 1);
normpl ot (x)
```


This plot is clear evidence that the underlying distribution is not normal.

Quantile-Q uantile Plots

A quantile-quantile plot is useful for determining whether two samples come from the same distribution (whether normally distributed or not).

The example shows a quantile-quantile plot of two samples from a Poisson distribution.

```
x = poi ssrnd(10,50,1);
y = poi ssrnd(5,100,1);
qqpl ot ( }x,y\mathrm{ ) ;
```


Even though the parameters and sample sizes are different, the straight line relationship shows that the two samples come from the same distribution.
Likethenormal probability plot, thequantile-quantile plot has three graphical el ements. The pluses are the quantiles of each sample. By default the number of pluses is the number of data values in the smaller sample. The solid linejoins the 25th and 75th percentiles of the samples. The dashed line extends the solid line to the extent of the sample.
Theexamplebel ow shows what happens when the underlying distributions are not the same.

```
x = normrnd(5, 1, 100, 1);
y = wei brnd(2,0.5,100,1);
qqpl ot ( }\textrm{x},\textrm{y}\mathrm{ ) ;
```


These samples clearly are not from the same distribution.
It is incorrect to interpret a linear plot as a guaranteethat the two samples come from the same distribution. But, for assessing the validity of a statistical procedure that depends on the two samples coming from the same distribution (e.g., ANOVA), a linear quantile-quantile plot should be sufficient.

Weibull Probability Plots

A Weibull probability plot is a useful graph for assessing whether data comes from a Weibull distribution. Many reliability analyses make the assumption that the underlying distribution of the lifetimes is Weibull, so this plot can provide some assurance that this assumption is not being violated, or provide an early warning of a problem with your assumptions.

The scale of the y-axis is not uniform. The y-axis values are probabilities and, as such, go from zero to one. The distance between thetick marks on the y-axis matches the distance between the quantiles of a Weibull distribution.

If the data points (pluses) fall near theline, the assumption that the data comes from a Weibull distribution is reasonable.

This example shows a typical Weibull probability plot.
$y=$ wei $\operatorname{brnd}(2,0.5,100,1)$;
wei bpl ot (y)

Empirical Cumulative Distribution Function (CDF)

If you are not willing to assume that your data follows a specific probability distribution, you can use the cdf pl ot function to graph an empirical estimate of the cumulative distribution function (cdf). This function computes the proportion of data points less than each x value, and plots the proportion as a function of x. The y-axis scale is linear, not a probability scale for a specific distribution.

This example shows the empirical cumulative distribution function for a Weibull sample.

```
y = wei br nd( 2, 0. 5, 100, 1);
```

cdf pl ot (y)

The plot shows a probability function that rises steeply near $x=0$ and levels off for larger values. Over 80% of the observations are less than 1 , with the remaining values spread over the range [15].

Scatter Plots

A scatter plot is a simple plot of one variable against another. The MATLAB pl ot and scatter functions can produce scatter plots. The MATLAB pl ot matri x function can produce a matrix of such plots showing the relationship between several pairs of variables.

The Statistics Tool box adds functions that produce grouped versions of these plots. These are useful for determining whether the values of two variables or the relationship between those variables is the same in each group.

Suppose we want to examine the weight and mileage of cars from three different model years.

```
I oad carsmal|
gscatter(Wei ght, MPG, Mbdel _Year,'',' 'xos')
```


This shows that not only is there a strong relationship between the weight of a car and its mileage, but also that newer cars tend to belighter and have better gas mileage than older cars.
(The default arguments for gscat ter produce a scatter plot with the different groups shown with the same symbol but different colors. The last two arguments above request that all groups be shown in default col ors and with different symbols.)

The carsmall data set contains other variables that describe different aspects of cars. We can examine several of them in a single display by creating a grouped plot matrix.

```
xvars = [ Wei ght Di spl acement Horsepower];
yvars = [MPG Accel erati on];
gpl ot matrix(xvars,yvars, Mbdel _Year,'',' xos')
```


The upper right subpl ot displays MPG against Hor sepower, and shows that over the years the horsepower of the cars has decreased but the gas mileage has improved.

The gpl ot nat rix function can also graph all pairs from a single list of variables, along with histograms for each variable. See "Multivariate Analysis of Variance (MANOVA)" on page 1-122.

Statistical Process Control (SPC)

SPC is an omnibus term for a number of methods for assessing and monitoring the quality of manufactured goods. These methods are simple, which makes them easy to implement even in a production environment. The following sections discuss some of the SPC features of the Statistics Tool box:

- "Control Charts"
- "Capability Studies"

Control Charts

These graphs were popularized by Walter Shewhart in his work in the 1920s at Western Electric. A control chart is a plot of a measurements over time with statistical limits applied. Actually, control chart is a slight misnomer. The chart itself is actually a monitoring tool. The control activity may occur if the chart indicates that the process is changing in an undesirable systematic direction.

The Statistics Tool box supports three common control charts, described in the following sections:

- "Xbar Charts"
- "S Charts"
- "EWMA Charts"

Xbar Charts

Xbar charts are a plot of the average of a sample of a process taken at regular intervals. Suppose we are manufacturing pistons to a tolerance of 0.5 thousandths of an inch. We measure the runout (deviation from circularity in thousandths of an inch) at four points on each piston.

```
load parts
conf = 0.99;
spec = [-0.5 0.5];
xbarpl ot (runout, conf,spec)
```


The lines at the bottom and the top of the plot show the process specifications. The central line is the average runout over all the pistons. The two lines flanking the center line are the 99\% statistical control limits. By chance only one measurement in 100 should fall outside these lines. We can see that even in this small run of 36 parts, there are several points outside the boundaries (labeled by their observation numbers). This is an indication that the process mean is not in statistical control. This might not be of much concern in practice, since all the parts are well within specification.

S Charts

The S chart is a plot of the standard deviation of a process taken at regular intervals. The standard deviation is a measure of the variability of a process. So, the plot indicates whether there is any systematic change in the process variability. Continuing with the piston manufacturing example, we can look at the standard deviation of each set of four measurements of runout.

```
schart(runout)
```


The average runout is about 0.1 thousandths of an inch. There is no indication of nonrandom variability.

EW MA Charts

The exponentially-weighted moving average (EWMA) chart is another chart for monitoring the process average. It operates on slightly different assumptions than the Xbar chart. The mathematical model behind the Xbar chart posits that the process mean is actually constant over time and any variation in individual measurements is due entirely to chance.
The EWMA model is a little looser. Here we assume that the mean may be varying in time. Here is an EWMA chart of our runout example. Compare this with the plot in "Xbar Charts" on page 1-138.
ewrrapl ot (runout, 0.5, 0.01, spec)

Capability Studies

Before going into full-scale production, many manufacturers run a pilot study to determine whether their process can actually build parts to the specifications demanded by the engineering drawing.
Using the data from these capability studies with a statistical model allows us to get a preliminary estimate of the percentage of parts that will fall outside the specifications.
[$\mathrm{p}, \mathrm{Cp}, \mathrm{Cpk}$] = capable(mean(runout), spec)
$\mathrm{p}=$

1. $3940 \mathrm{e}-09$

Cp =
2. 3950

Cpk =

1. 9812

The result above shows that the probability ($p=1.3940 \mathrm{e}-09$) of observing an unacceptable runout is extremely low. Cp and Cpk are two popular capability indices.
C_{p} is the ratio of the range of the specifications to six times the estimate of the process standard deviation.

$$
C_{p}=\frac{U S L-L S L}{6 \sigma}
$$

For a process that has its average value on target, a C_{p} of 1 translates to a little more than one defect per thousand. Recently many industries have set a quality goal of one part per million. This would correspond to a $C_{p}=1.6$. The higher the value of C_{p}, the more capable the process.
C_{pk} is the ratio of difference between the process mean and the closer specification limit to three times the estimate of the process standard deviation.

$$
C_{p k}=\min \left(\frac{\mathrm{USL}-\mu}{3 \sigma}, \frac{\mu-\mathrm{LSL}}{3 \sigma}\right)
$$

where the process mean is μ. F or processes that do not maintain their average on target, C_{pk}, is a more descriptive index of process capability.

Design of Experiments (DOE)

There is a world of difference between data and information. To extract information from data you have to make assumptions about the system that generated the data. Using these assumptions and physical theory you may be able to devel op a mathematical model of the system.

Generally, even rigorously formulated models have some unknown constants. The goal of experimentation is to acquire data that allow us to estimate these constants.

But why do we need to experiment at all? We could instrument the system we want to study and just let it run. Sooner or later we would have all the data we could use.

In fact, this is a fairly common approach. There are three characteristics of historical data that pose problems for statistical modeling:

- Suppose we observe a change in the operating variables of a system followed by a change in the outputs of the system. That does not necessarily mean that the change in the system caused the change in the outputs.
- A common assumption in statistical modeling is that the observations are independent of each other. This is not the way a system in normal operation works.
- Controlling a system in operation often means changing system variables in tandem. But if two variables change together, it is impossible to separate their effects mathematically.

Designed experiments directly address these problems. The overwhelming advantage of a designed experiment is that you actively manipulatethe system you are studying. With DOE you may generatefewer data points than by using passive instrumentation, but the quality of the information you get will be higher.

The Statistics Tool box provides several functions for generating experimental designs appropriate to various situations. These are discussed in the following sections:

- "Full Factorial Designs"
- "Fractional Factorial Designs"
- "D-Optimal Designs"

Full Factorial Designs

Suppose you want to determine whether the variability of a machining process is due to the difference in the lathes that cut the parts or the operators who run the lathes.

If the same operator always runs a given lathe then you cannot tell whether the machine or the operator is the cause of the variation in the output. By allowing every operator to run every lathe you can separate their effects.

This is a factorial approach. f ull f act is the function that generates the design. Suppose we have four operators and three machines. What is the factorial design?

```
d = ful|fact([4 3])
d =
    1 1
    2 1
    3 1
    4
    2
    2
    2
    4
    1 3
    2 3
    3 3
    4 3
```

Each row of d represents one operator/machine combination. Note that there are $4 * 3$ = 12 rows.

One special subclass of factorial designs is when all the variables take only two values. Suppose you want to quickly determine the sensitivity of a process to high and low values of three variables.

```
d2 = ff 2n(3)
```

$\mathrm{d} 2=$| | | |
| ---: | ---: | ---: |
| 0 | 0 | 0 |
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 0 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |
| 1 | 1 | 1 |

There are $2^{3}=8$ combinations to check.

Fractional Factorial Designs

One difficulty with factorial designs is that the number of combinations increases exponentially with the number of variables you want to manipulate.

For example, the sensitivity study discussed above might be impractical if there were seven variables to study instead of just three. A full factorial design would require $2^{7}=128$ runs!

If we assume that the variables do not act synergistically in the system, we can assess the sensitivity with far fewer runs. The theoretical minimum number is eight. A design known as the Plackett-Burman design uses a H adamard matrix to define this minimal number of runs. To see the design (X) matrix for the Plackett-Burman design, we use the hadanmr d function.

$\mathrm{X}=$ hadamar d (8)							
$\mathrm{X}=$							
1	1	1	1	1	1	1	1
1	-1	1	-1	1	-1	1	-1
1	1	-1	-1	1	1	-1	-1
1	-1	-1	1	1	-1	-1	1
1	1	1	1	-1	-1	-1	-1
1	-1	1	-1	-1	1	-1	1
1	1	-1	-1	-1	-1	1	1
1	-1	-1	1	-1	1	1	-1

The last seven columns are the actual variable settings (-1 for low, 1 for high.) The first column (all ones) allows us to measure the mean effect in the linear equation, $y=X \beta+\varepsilon$.

The Plackett-Burman design enables us to study the main (linear) effects of each variable with a small number of runs. It does this by using a fraction, in this case $8 / 128$, of the runs required for a full factorial design. A drawback of this design is that if the effect of one variable does vary with the value of another variable, then the estimated effects will be biased (that is, they will tend to be off by a systematic amount).

At a cost of a somewhat larger design, we can find a fractional factorial that is much smaller than a full factorial, but that does allow estimation of main effects independent of interactions between pairs of variables. We can do this by specifying generators that control the confounding between variables.

As an example, suppose we create a design with the first four variables varying independently as in a full factorial, but with the other three variables formed by multiplying different triplets of the first four. With this design the effects of the last three variables are confounded with three-way interactions among the first four variables. The estimated effect of any single variable, however, is not confounded with (is independent of) interaction effects between any pair of variables. Interaction effects are confounded with each other. Box, H unter, and Hunter (1978) present the properties of these designs and provide the generators needed to produce them.

The fr acf act function can produce this fractional factorial design using the generator strings that Box, Hunter, and Hunter provide.

```
X = fracfact('a b c d abc bcd acd')
```

$X=$| | | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -1 | -1 | -1 | -1 | -1 | -1 | -1 |
| -1 | -1 | -1 | 1 | -1 | 1 | 1 |
| -1 | -1 | 1 | -1 | 1 | 1 | 1 |
| -1 | -1 | 1 | 1 | 1 | -1 | -1 |
| -1 | 1 | -1 | -1 | 1 | 1 | -1 |
| -1 | 1 | -1 | 1 | 1 | -1 | 1 |
| -1 | 1 | 1 | -1 | -1 | -1 | 1 |
| -1 | 1 | 1 | 1 | -1 | 1 | -1 |
| 1 | -1 | -1 | -1 | 1 | -1 | 1 |
| 1 | -1 | -1 | 1 | 1 | 1 | -1 |
| 1 | -1 | 1 | -1 | -1 | 1 | -1 |
| 1 | -1 | 1 | 1 | -1 | -1 | 1 |
| 1 | 1 | -1 | -1 | -1 | 1 | 1 |
| 1 | 1 | -1 | 1 | -1 | -1 | -1 |
| 1 | 1 | 1 | -1 | 1 | -1 | -1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 |

D-Optimal Designs

All the designs above were in use by early in the 20th century. In the 1970s statisticians started to use the computer in experimental design by recasting the design of experiments (DOE) in terms of optimization. A D-optimal design is one that maximizes the determinant of Fisher's information matrix, $X^{\top} X$. This matrix is proportional to the inverse of the covariance matrix of the parameters. So maximizing $\operatorname{det}\left(X^{\top} X\right)$ is equivalent to minimizing the determinant of the covariance of the parameters.

A D-optimal design minimizes the volume of the confidence ellipsoid of the regression estimates of the linear model parameters, β.

There are several functions in the Statistics Tool box that generate D-optimal designs. These are cor dexch, daugment, dcovary, and rowexch. The following sections explore D-optimal design in greater detail:

- "Generating D-Optimal Designs"
- "Augmenting D-Optimal Designs"
- "Designing Experiments with Uncontrolled Inputs"

Generating D-Optimal Designs

cor dexch and rowexch are two competing optimization algorithms for computing a D-optimal design given a model specification.

Both cor dexch and rowexch are iterative algorithms. They operate by improving a starting design by making incremental changes to its elements. In the coordinate exchange al gorithm, the increments aretheindividual elements of the design matrix. In row exchange, the elements are the rows of the design matrix. Atkinson and Donev (1992) is a reference.

To generate a D-optimal design you must specify the number of inputs, the number of runs, and the order of the model you want to fit.
Both cor dexch and rowexch take the following strings to specify the model:

- 'I inear' or 'I' - the default model with constant and first order terms
- 'inter action' or 'i' - includes constant, linear, and cross product terms
- ' quadr at ic' or ' q ' - interactions plus squared terms
- ' pur equadr atic' or ' p ' - includes constant, linear and squared terms

Alternatively, you can use a matrix of integers to specify theterms. Details are in the help for the utility function $x 2 f x$.

For a simple example using the coordinate-exchange algorithm, consider the problem of quadratic modeling with two inputs. The model form is

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{12} x_{1} x_{2}+\beta_{11} x_{1}^{2}+\beta_{22} x_{2}^{2}+\varepsilon
$$

Suppose we want the D-optimal design for fitting this model with nine runs.

```
settings = cordexch(2, 9,' q' )
settings =
```

-1	1
1	1
0	1
1	-1
-1	-1
0	-1
1	0
0	0
-1	0

We can plot the columns of settings against each other to get a better picture of the design.

```
h = pl ot(settings(:,1),settings(:,2),'.');
set(gca,'Xtick',[-1 0 1])
set(gca,'Ytick',[-1 0 1])
set(h, ' Markersize', 20)
```


For a simple example using the row-exchange al gorithm, consider the interaction model with two inputs. The model form is

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{12} x_{1} x_{2}+\varepsilon
$$

Suppose we want the D-optimal design for fitting this model with four runs.

```
[settings, X] = rowexch(2,4,'i')
settings =
    -1 1
    -1 -1
        1 -1
        1
X =
\begin{tabular}{rrrr}
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1 \\
1 & 1 & -1 & -1 \\
1 & 1 & 1 & 1
\end{tabular}
```

The settings matrix shows how to vary the inputs from run to run. TheX matrix is the design matrix for fitting the aboveregression model. Thefirst column of X
is for fitting the constant term. The last column is the element-wise product of the second and third columns.

The associated plot is simple but elegant.

```
h = pl ot(settings(:,1), settings(:, 2),'.');
set(gca,'Xtick',[-1 0 1])
set(gca,'Ytick',[-1 0 1])
set(h, 'Markersi ze', 20)
```


Augmenting D-Optimal Designs

In practice, experimentation is an iterative process. We often want to add runs to a completed experiment to learn more about our system. The function daugment allows you choose these extra runs optimally.

Suppose we have executed the eight-run design bel ow for fitting a linear model to four input variables.

```
settings = cordexch(4,8)
settings =
```

1	-1	1	1
-1	-1	1	-1
-1	1	1	1
1	1	1	-1
-1	1	-1	1
1	-1	-1	1
-1	-1	-1	-1
1	1	-1	-1

This design is adequate to fit the linear model for four inputs, but cannot fit the six cross-product (interaction) terms. Suppose we are willing to do eight more runs to fit these extra terms. Here's how.
[augmented, X$]=$ daugment(settings, 8,'i');
augment ed augrent ed =

1	-1	1	1
-1	-1	1	-1
-1	1	1	1
1	1	1	-1
-1	1	-1	1
1	-1	-1	1
-1	-1	-1	-1
1	1	-1	-1
-1	-1	-1	1
1	1	1	1
-1	-1	1	1
-1	1	1	-1
1	-1	1	-1
1	-1	-1	-1
-1	1	-1	-1
1	1	-1	1

inf $O=X^{\prime} * X$
info =

16	0	0	0	0	0	0	0	0	0	0
0	16	0	0	0	0	0	0	0	0	0
0	0	16	0	0	0	0	0	0	0	0
0	0	0	16	0	0	0	0	0	0	0
0	0	0	0	16	0	0	0	0	0	0
0	0	0	0	0	16	0	0	0	0	0
0	0	0	0	0	0	16	0	0	0	0
0	0	0	0	0	0	0	16	0	0	0
0	0	0	0	0	0	0	0	16	0	0
0	0	0	0	0	0	0	0	0	16	0
0	0	0	0	0	0	0	0	0	0	16

The augmented design is orthogonal, since $X^{\prime} * X$ is a multiple of the identity matrix. In fact, this design is the same as a 2^{4} factorial design.

Designing Experiments with Uncontrolled Inputs

Sometimes it is impossible to control every experimental input. But you may know the values of some inputs in advance. An example is the time each run takes place. If a process is experiencing linear drift, you may want to include the time of each test run as a variable in the model.

The function dcovar y allows you to choose the settings for each run in order to maximize your information despite a linear drift in the process.

Suppose we want to execute an eight-run experiment with three factors that is optimal with respect to a linear drift in the response over time. First we create our drift input variable. Note, that drift is normalized to havemean zero. Its minimum is -1 and its maximum is 1 .

```
drift = (linspace(-1, 1, 8) )'
drift =
    -1.0000
    -0.7143
    -0.4286
    -0.1429
        0.1429
        0.4286
        0.7143
        1. }000
settings = dcovary(3,drift,'linear')
settings =
\begin{tabular}{rrrr}
1.0000 & 1.0000 & -1.0000 & -1.0000 \\
-1.0000 & -1.0000 & -1.0000 & -0.7143 \\
-1.0000 & 1.0000 & 1.0000 & -0.4286 \\
1.0000 & -1.0000 & 1.0000 & -0.1429 \\
-1.0000 & 1.0000 & -1.0000 & 0.1429 \\
1.0000 & 1.0000 & 1.0000 & 0.4286 \\
-1.0000 & -1.0000 & 1.0000 & 0.7143 \\
1.0000 & -1.0000 & -1.0000 & 1.0000
\end{tabular}
```


Demos

The Statistics Toolbox has demonstration programs that create an interactive environment for exploring the probability distributions, random number generation, curve fitting, and design of experiments functions. M ost of them provide a graphical user interfacethat can beused with your real data, not just with the sample data provided.

The available demos are listed below.

Demo	Purpose
aoct ool	Interactive graphic prediction of anocova fits
di st tool	Graphic interaction with probability distributions
gl ndeñ	Generalized linear models slide show
nl i nt ool	Interactive fitting of nonlinear models
pol yt ool	Interactive graphic prediction of polynomial fits
randt ool	Interactive control of random number generation
robust denø	Interactive comparison of robust and least squares fits
rsmelem	Design of experiments and regression modeling
rstool	Exploring graphs of multidimensional polynomials
stepwi se	Interactive stepwise regression

Most of these functions are described below. The nl int ool , rst ool, and st epui se demos are discussed in earlier sections:

- nl i nt ool : "An Interactive GUI for Nonlinear Fitting and Prediction" on page 1-104
- rst ool : "Exploring Graphs of Multidimensional Polynomials" on page 1-86
- st epwi se: "Example: Stepwise Regression" on page 1-88

The disttool Demo

di sttool is a graphic environment for developing an intuitive understanding of probability distributions.

The di sttool demo has the following features:

- A graph of the cdf (pdf) for the given parameters of a distribution.
- A pop-up menu for changing the distribution function.
- A pop-up menu for changing the function type (cdf $<->$ pdf).
- Sliders to change the parameter settings.
- Data entry boxes to choose specific parameter values.
- Data entry boxes to change the limits of the parameter sliders.
- Draggablehorizontal and vertical referencelines to do interactiveevaluation of the function at varying values.
- A data entry box to evaluate the function at a specific x-value.
- F or cdf plots, a data entry box on the probability axis (y-axis) to find critical values corresponding to a specific probability.
- A Close button to end the demonstration.

The polytool Demo

Thepol yt ool demois an interactivegraphic environment for polynomial curve fitting and prediction.

The pol yt ool demo has the following features:

- A graph of the data, the fitted polynomial, and global confidence bounds on a new predicted value.
- y-axis text to display the predicted y-value and its uncertainty at the current x-value.
- A data entry box to change the degree of the polynomial fit.
- A data entry box to evaluate the polynomial at a specific x-value.
- A draggable vertical reference line to do interactive evaluation of the polynomial at varying x-values.
- Bounds and Method menus to control the confidence bounds and choose between least squares or robust fitting.
- A Close button to end the demonstration.
- An Export list box to store fit results into variables.

You can use pol yt ool to do curve fitting and prediction for any set of $x-y$ data, but, for the sake of demonstration, the Statistics Tool box provides a data set (pol ydat a. mat) to teach some basic concepts.

To start the demonstration, you must first load the data set.
l oad pol ydata
who
Your variables are:

x	$x 1$	y	$y 1$

The variables x and y are observations made with error from a cubic polynomial. The variables $x 1$ and $y 1$ are data points from the "true" function without error.

If you do not specify the degree of the polynomial, pol yt ool does a linear fit to the data.
pol yt ool (x, y)

The linear fit is not very good. The bulk of the data with x-values between zero and two has a steeper slope than the fitted line. The two points to the right are dragging down the estimate of the slope.
In the Degree box at the top, type 3 for a cubic model. Then, drag the vertical reference line to the x-value of 2 (or type 2 in the \mathbf{X} Values text box).

This graph shows a much better fit to the data. The confidence bounds are closer together indicating that there is less uncertainty in prediction. The data at both ends of the plot tracks the fitted curve.

The following sections explore additional aspects of the tool:

- "Confidence Bounds"
- "Overfitting"

Confidence Bounds

By default, the confidence bounds are nonsimultaneous bounds for a new observation. What does this mean? Let $p(x)$ be the true but unknown function we want to estimate. The graph contains the following three curves:

- $f(x)$, our fitted function
- I(x), the lower confidence bounds
- $u(x)$, the upper confidence bounds

Suppose we plan to take a new observation at the value $\mathrm{x}_{\mathrm{n}+1}$. Call it $y_{n+1}\left(x_{n+1}\right)$. This new observation has its own error ε_{n+1}, so it satisfies the equation

$$
y_{n+1}\left(x_{n+1}\right)=p\left(x_{n+1}\right)+\varepsilon_{n+1}
$$

What are the likely values for this new observation? The confidence bounds provide the answer. The interval $\left[I_{n+1}, u_{n+1}\right]$ is a 95% confidence bound for $y_{n+1}\left(x_{n+1}\right)$.
These are the default bounds, but the Bounds menu on the pol yt ool figure window provides options for changing the meaning of these bounds. This menu has options that let you specify whether the bounds are to apply to the estimated function or to a new observation, and whether the bounds should be simultaneous or not. Using these options you can produce any of the following types of confidence bounds.

Simultaneous?	For Quantity	Yields Confidence Bounds for
Nonsimultaneous	Observation	$\mathrm{y}_{\mathrm{n}+1}\left(\mathrm{x}_{\mathrm{n}+1}\right)$
Nonsimultaneous	Curve	$\mathrm{p}\left(\mathrm{x}_{\mathrm{n}+1}\right)$
Simultaneous	Observation	$\mathrm{y}_{\mathrm{n}+1}(\mathrm{x})$, globally for any x
Simultaneous	Curve	$\mathrm{p}(\mathrm{x})$, simultaneously for all x

O verfitting

If the cubic polynomial is a good fit, it is tempting to try a higher order polynomial to see if even more precise predictions are possible.
Since the true function is cubic, this amounts to overfitting the data. Use the data entry box for degree and type 5 for a quintic model.

As measured by the confidence bounds, the fit is precise near the data points. But, in the region between the data groups, the uncertainty of prediction rises dramatically.

This bulge in the confidence bounds happens because the data really does not contain enough information to estimate the higher order polynomial terms precisely, so even interpolation using polynomials can be risky in some cases.

The aoctool Demo

The aoct ool demo is an interactive graphical environment for fitting and prediction with analysis of covariance (anocova) models. It is similar to the pol yt ool demo.

Analysis of covariance is a technique for analyzing grouped data having a response (y, the variable to be predicted) and a predictor (x, the variable used to do the prediction). Using analysis of covariance, you can model y as a linear function of x, with the coefficients of the line possibly varying from group to group. The aoct ool function fits the following models for the ith group:

1 same mean

$$
y=\alpha+\varepsilon
$$

2 separate means $y=\left(\alpha+\alpha_{i}\right)+\varepsilon$
3 sameline $y=\alpha+\beta x+\varepsilon$

4 parallel lines
$y=\left(\alpha+\alpha_{i}\right)+\beta x+\varepsilon$
5 separate lines
$y=\left(\alpha+\alpha_{i}\right)+\left(\beta+\beta_{i}\right) x+\varepsilon$

In the fourth model, for example, the intercept varies from one group to the next, but the slope is the same for each group. In the first model, there is a common intercept and no slope. In order to make the group coefficients well determined, we impose the constraints $\Sigma \alpha_{i}=\Sigma \beta_{i}=0$.

The aoct ool demo displays the results of the fit in three figure windows. One window displays estimates of the coefficients ($\alpha, \alpha_{i}, \beta, \beta_{i}$). A second displays an analysis of variance table that you can use to test whether a more complex model is significantly better than a simpler one. The third, main graphics window has the following features:

- A graph of the data with superimposed fitted lines and optional confidence bounds.
- y-axis text to display the predicted y-value and its uncertainty at the current x-value for the current group, if a group is currently selected.
- A data entry box to evaluate the fit at a specific x-value.
- A list box to evaluate the fit for a specific group or to display fitted lines for all groups.
- A draggable vertical reference line to do interactive evaluation of the fit at varying x-values.
- A Close button to end the demonstration.
- An Export list box to store fit results into variables.

The following section provides an illustrative example.

Example: aoctool with Sample Data

The Statistics Toolbox has a small data set named car small with information about cars. It is a good sample data set to use with aoct ool. You can also use aoct ool with your own data.

To start the demonstration, load the data set.
I oad carsmall
who
Your variables are:

Accel eration	Horsepower	Mdel_Year
Cyl inders	MPG	Ori inin
Di spl acenent	Mbdel	Wei ght

Suppose we want to study the relationship between the weight of a car and its mileage, and whether this relationship has changed over the years.

Next, start up the tool.
[h, at ab, ct ab, st at s] = aoct ool (Wei ght, MPG, Mbdel_Year) ;
Note: 6 observations with missing val ues have been removed.
The graphical output consists of the following main window, plus a table of coefficient estimates and an analysis of variance table.

The group of each data point is coded by its col or and symbol, and the fit for each group has the same color as the data points.

- Figure No. 3: ANOCOVA Coefficients				- $\square^{\text {a }}$ (
File Edit Iools Window Help						
Coefficient Estimates						
Coefficient	Estimate	Std. Err	T	Prob>\|T		\triangle
Intercept	45.9798	1.52085	30.23	0		
70	-8.5805	1. 96186	-4.37	0		
76	-3.8902	1.86864	-2.08	0.0403		
82	12.4707	2.5568	4.88	0		
Slope	-0.0078	0.00056	-14	0		
70	0.002	0.00066	2.96	0.0039		
76	0.0011	0.00065	1.74	0.0849		
82	-0.0031	0.001	-3.1	0.0026	\checkmark	

The initial fit models the y variable, MPG, as a linear function of the x variable, Wei ght. Each group has a separate line. The coefficients of the three lines
appear in the figuretitled ANOCOVA Coefficients. You can seethat theslopes are roughly -0.0078 , with a small deviation for each group:

Model year 70: $\quad y=(45.9798-8.5805)+(-0.0078+0.002) x+\varepsilon$
Model year 76: $\quad y=(45.9798-3.8902)+(-0.0078+0.0011) x+\varepsilon$
Model year 82: $\quad y=(45.9798+12.4707)+(-0.0078-0.0031) x+\varepsilon$

Notice that the three fitted lines have slopes that are roughly similar. Could they really be the same? The Mbdel _Year * Wei ght interaction expresses the difference in slopes, and the ANOVA table shows a test for the significance of this term. With an F statistic of 5.23 and a p-value of 0.0072 , the slopes are significantly different.

A Figure No. 2: ANOCOVA Test Results					- - - ${ }^{\text {a }}$
Eile Edit Iools Whindow Help					
ANOVA Table					
Source	d.f	Sum Sq	Mean Sq	F	Prob>F \triangleq
Model_Year	2	807.69	403.84	51.98	,
Weight	1	2050.2	2050.2	263.87	O
Model_Year*Weight	2	81.22	40.61	5.23	0.0072
Error	88	683.74	7.77		\checkmark

To examine the fits when the slopes are constrained to be the same, return to the ANOCOVA Prediction Plot window and use the Model pop-up to select a Parallel Lines model. The window updates to show the graph below.

Though this fit looks reasonable, we know it is significantly worse than the Separate Lines model. Use the Model pop-up again to return to the original model.

The following sections focus on two other interesting aspects of aoct ool :

- "Confidence Bounds"
- "Multiple Comparisons"

Confidence Bounds. Now we have estimates of the relationship between MPG and Wei ght for each Mbdel _Year , but how accurate are they? We can superimpose confidence bounds on the fits by examining them one group at a time. In the Model_Year menu at the lower right of the figure, change the setting from All Groups to 82. The data and fits for the other groups are dimmed, and confidence bounds appear around the 82 fit.

The dashed lines form an envel ope around the fitted line for model year 82. Under the assumption that the true relationship is linear, these bounds providea 95% confidence region for the true line. N otethat the fits for theother model years are well outside these confidence bounds for Wei ght values between 2000 and 3000.

Sometimes it is more valuable to be able to predict the responsevaluefor a new observation, not just estimate the average response value. Like the pol yt ool function, the aoct ool function has a Bounds menu to change the definition of the confidence bounds. Use that menu to change from Line to Observation. The resulting wider intervals reflect the uncertainty in the parameter estimates as well as the randomness of a new observation.

Also like the pol yt ool function, the aoct ool function has crosshairs you can use to manipulate the Wei ght and watch the estimate and confidence bounds al ong the y-axis update. These values appear only when a single group is selected, not when All Groups is selected.

Multiple Comparisons. We can perform a multiple comparison test by using the st at s output from aoct ool as input to the mul t compar e function. The multcompare function can test either slopes, intercepts, or population marginal means (the heights of the four lines evaluated at the mean X value). In this example, we have already determined that the slopes are not all the same, but could it be that two are the same and only the other one is different? We can test that hypothesis.

```
mul t compare( stat s, 0.05,' on' ,' ', ' s' )
ans =
\begin{tabular}{rrrrr}
1.0000 & 2.0000 & -0.0012 & 0.0008 & 0.0029 \\
1.0000 & 3.0000 & 0.0013 & 0.0051 & 0.0088 \\
2.0000 & 3.0000 & 0.0005 & 0.0042 & 0.0079
\end{tabular}
```

This matrix shows that the estimated difference between the intercepts of groups 1 and 2 (1970 and 1976) is 0.0008, and a confidence interval for the difference is [-0.0012, 0.0029]. There is no significant difference between the two. There are significant differences, however, between the intercept for 1982 and each of the other two. The graph shows the same information.

Note that the st at s structure was created in the initial call to the aoct ool function, so it is based on theinitial model fit (typically a separate-lines model). If you change the model interactively and want to base your multiple comparisons on the new model, you need to run aoct ool again to get another stats structure, this time specifying your new model as the initial model.

The randtool Demo

randt ool is a graphic environment for generating random samples from various probability distributions and displaying the sample histogram.

The randt ool demo has the following features:

- A histogram of the sample.
- A pop-up menu for changing the distribution function.
- Sliders to change the parameter settings.
- A data entry box to choose the sample size.
- Data entry boxes to choose specific parameter values.
- Data entry boxes to change the limits of the parameter sliders.
- An Output button to output the current sample to the variable ans.
- A Resample button to allow repetitive sampling with constant sample size and fixed parameters.
- A Close button to end the demonstration.

The rsmdemo Demo

The rsmeno utility is an interactive graphic environment that demonstrates the design of experiments and surface fitting through the simulation of a chemical reaction. The goal of the demo is to find the levels of the reactants needed to maximize the reaction rate.

There are two parts to the demo:

- "Part 1" - Compare data gathered through trial and error with data from a designed experiment.
- "Part 2" - Compare response surface (polynomial) modeling with nonlinear modeling.

Part 1

Begin the demo by using the sliders in the Reaction Simulator window to control the partial pressures of three reactants: Hydrogen, n-Pentane, and Isopentane. Each time you click the Run button, the levels for the reactants and results of the run are entered in the Trial and Error Data window.

Based on the results of previous runs, you can change the levels of the reactants to increase the reaction rate. (The results are determined using an underlying model that takes into account the noise in the process, so even if you keep all of the levels the same, the results will vary from run to run.) You are allotted a budget of 13 runs. When you have completed the runs, you can use the Plot menu on the Trial and Error Data window to plot the relationships between the reactants and the reaction rate, or click the Analyze button. When you dick Analyze, rsmdeno calls the rst ool function, which you can then use to try to optimize the results.)

Next, perform another set of 13 runs, this time from a designed experiment. In the Experimental Design Data window, click the Do Experiment button. r smolem calls the cor dexch function to generate a D-optimal design, and then, for each run, computes the reaction rate.

Now use the Plot menu on the Experimental Design Data window to plot the relationships between the levels of the reactants and the reaction rate, or click the Response Surface button to call rst ool to find the optimal levels of the reactants.

Compare the analysis results for the two sets of data. It is likely (though not certain) that you'll find some or all of these differences:

- You can fit a full quadratic model with the data from the designed experiment, but the trial and error data may be insufficient for fitting a quadratic model or interactions model.
- Using the data from the designed experiment, you are more likely to be able to find levels for the reactants that result in the maximum reaction rate. Even if you find the best settings using the trial and error data, the confidence bounds are likely to be wider than those from the designed experiment.

Part 2

Now analyze the experimental design data with a polynomial model and a nonlinear model, and comparing the results. The true model for the process, which is used to generate the data, is actually a nonlinear model. However, within the range of the data, a quadratic model approximates the true model quite well.

To see the polynomial model, click the Response Surface button on the Experimental Design Data window. rsmemo calls rst ool, which fits a full quadratic model to the data. Drag thereference lines to changethelevels of the reactants, and find the optimal reaction rate. Observe the width of the confidence intervals.

Now click the Nonlinear Model button on the Experimental Design Data window. rsmemo calls nl i nt ool, which fits a Hougen-Watson model to the data. As with the quadratic model, you can drag the reference lines to change the reactant levels. Observe the reaction rate and the confidence intervals.

Compare the analysis results for the two models. Even though the true model is nonlinear, you may find that the polynomial model provides a good fit. Because polynomial models are much easier to fit and work with than nonlinear models, a polynomial model is often preferable even when modeling a nonlinear process. Keep in mind, however, that such models are unlikely to be reliable for extrapolating outside the range of the data.

The glmdemo Demo

The gl molem function presents a simple slide show describing generalized linear models. It presents examples of what functions and distributions are available with generalized linear models. It presents an example where traditional linear least squares fitting is not appropriate, and shows how to use the gl mfit function to fit a logistic regression model and the gl mal function to compute predictions from that model.

The robustdemo Demo

The r obust dem function presents a simple comparison of least squares and robust fits for a response and a single predictor. You can use r obust deme with your own data or with the sample data provided.
To begin using robust demo with the built-in sample data, simply type the function name.

```
robust deno
```

The resulting figure presents a scatter plot with two fitted lines. One line is the fit from an ordinary least squares regression. The other is from a robust regression. Along the bottom of the figure are the equations for the fitted line and the estimated error standard deviation for each fit.

The effect of any point on the least squares fit depends on the residual and leverage for that point. The residual is simply the vertical distance from the point to the line. The leverage is a measure of how far the point is from the center of the X data.

The effect of any point on the robust fit also depends on the weight assigned to the point. Points far from the line get lower weight.

You can use the right mouse button to click on any point and see its least squares leverage and robust weight.

In this example, the rightmost point has a leverage value of 0.35 . It is also far from the line, so it exerts a large influence on the least squares fit. It has a small weight, though, so it is effectively excluded from the robust fit.

Using the left mouse button, you can experiment to seehow changes in the data affect the two fits. Select any point, and drag it to a new location while holding the left button down. When you release the point, both fits update.

Bringing therightmost point closer to thelinemakes the two fitted lines nearly identical. Now, the point has nearly full weight in the robust fit.

Selected Bibliography

Atkinson, A.C., and A.N. Donev, Optimum Experimental Designs, Oxford Science Publications 1992.

Bates, D. and D. Watts. Nonlinear Regression Analysis and Its Applications, J ohn Wiley and Sons. 1988. pp. 271-272.

Bernoulli, J ., Ars Conjectandi, Basiliea: Thurnisius [11.19], 1713
Box, G.E.P., W.G. Hunter, and J.S. Hunter. Statistics for Experimenters. Wiley, New York. 1978.

Chatterjee, S. and A.S. Hadi. Influential Observations, High Leverage Points, and Outliers in Linear Regression. Statistical Science, 1986. pp. 379-416.

Dobson, A. J., An Introduction to Generalized Linear Models, 1990, CRC Press.
Efron, B., and R.J. Tibshirani. An Introduction to the Bootstrap, Chapman and Hall, New Y ork. 1993.

Evans, M., N. Hastings, and B. Peacock. Statistical Distributions, Second Edition. J ohn Wiley and Sons, 1993.

Hald, A., Statistical Theory with Engineering Applications, J ohn Wiley and Sons, 1960. p. 647.

Hogg, R.V., and J. Ledolter. Engineering Statistics. MacMillan Publishing Company, 1987.
J ohnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate Distributions. J ohn Wiley and Sons, 1970.

MuCullagh, P., and J. A. Nelder, Generalized Linear M odels, 2nd edition, 1990, Chapman and Hall.

M oore, J., Total Biochemical Oxygen Demand of Dairy Manures. Ph.D. thesis. University of Minnesota, Department of Agricultural Engineering, 1975.

Poisson, S.D., Recherches sur Ia Probabilité des J ugements en Matiere Criminelle et en Metière Civile, Précédées des Regles Générales du Calcul des Probabilitiés. Paris: Bachelier, Imprimeur-Libraire pour les Mathematiques, 1837.
"Student," On the Probable Error of the Mean. Biometrika, 6:1908. pp. 1-25.

Weibull, W., A Statistical Theory of the Strength of Materials. Ingeniors Vetenskaps Akademi ens Handlingar, Royal Swedish Institutefor Engineering Research. Stockholm, Sweden, No. 153. 1939.

Reference

This chapter contains detailed descriptions of all the Statistics Tool box functions. It is divided into two sections:

- "Function Category List" - a list of functions, grouped by subject area
- "Alphabetical List of Functions" - reference pages in alphabetical order

Function Category List

The Statistics Tool box provides several categories of functions.

The Statistics Toolbox's Main Categories of Functions	
Probability Distributions	Parameter Estimation
	Cumulative Distribution Functions (cdf)
	Probability Density Functions (pdf)
	Inverse Cumulative Distribution Functions
	Random Number Generators
Descriptive Statistics	Moments of Distribution Functions
Statistical Plotting	Descriptive statistics for data samples
Statistical Process Control	Statistical Process Control
Cluster Analysis	Grouping items with similar characteristics into clusters
Linear Models	Fitting linear models to data
Nonlinear Regression	Fitting nonlinear regression models
Design of Experiments	Design of Experiments
Princi pal Components	Principal Components Analysis
Analysis	Statistical tests of hypotheses
Hypothesis Tests	Reading data from and writing data to
operating-system files	
File I/O	Demonstrations
Demonstrations	Data for examples
Data	

The fol lowing tables list the functions in each of these specific areas. The first seven tables contain probability distribution functions. The remaining tables describe the other categories of functions.

Parameter Estimation

bet af it	Parameter estimation for the beta distribution
bet al ike	Beta log-likelihood function
bi nof it	Parameter estimation for the binomial distribution
expfit	Parameter estimation for the exponential distribution
ganfit	Parameter estimation for the gamma distribution
gami ke	Gamma log-likelihood function
me	Maximum likelihood estimation
normike	Normal log-likelihood function
normit	Parameter estimation for the normal distribution
poissfit	Parameter estimation for the Poisson distribution
unifit	Parameter estimation for the uniform distribution

Cumulative Distribution Functions (cdf)

bet acdf	Beta cdf
bi nocdf	Binomial cdf
cdf	Parameterized cdf routine
chi 2 cdf	Chi-square cdf
expcdf	Exponential cdf

Cumulative Distribution Functions (cdf) (Continued)	
f cdf	F cdf
gancdf	Gamma cdf
geocdf	Geometric cdf
hygecdf	Hypergeometric cdf
I ogncdf	L ognormal cdf
nbi ncdf	Negative binomial cdf
ncf cdf	Noncentral F cdf
nct cdf	Noncentral t cdf
ncx2cdf	Noncentral Chi-square cdf
nor madf	Normal (Gaussian) cdf
poi sscdf	Poisson cdf
rayl cdf	Rayleigh cdf
t cdf	Student's t cdf
uni dcdf	Discrete uniform cdf
uni fcdf	Continuous uniform cdf
wei bcdf	Weibull cdf

Probability Density Functions (pdf)

bet apdf	Beta pdf
bi nopdf	Binomial pdf
chi 2 pdf	Chi-square pdf
exppdf	Exponential pdf

Probability Density Functions (pdf) (Continued)	
f pdf	F pdf
gampdf	Gamma pdf
geopdf	Geometric pdf
hygepdf	Hypergeometric pdf
nor mpdf	Normal (Gaussian) pdf
I ognpdf	Lognormal pdf
nbi npdf	Negative binomial pdf
ncf pdf	Noncentral F pdf
nct pdf	Noncentral t pdf
ncx2pdf	Noncentral Chi-square pdf
pdf	Parameterized pdf routine
poi sspdf	Poisson pdf
rayl pdf	Rayleigh pdf
t pdf	Student's t pdf
uni dpdf	Discrete uniform pdf
uni f pdf	Continuous uniform pdf
wei bpdf	Weibull pdf

Inverse Cumulative Distribution Functions

bet ai nv	Beta critical values
bi noi nv	Binomial critical values
chi $2 i$ nv	Chi-square critical values

Inverse Cumulative Distribution Functions (Continued)	
expi nv	Exponential critical values
fi nv	F critical values
gami nv	Gamma critical values
geoi nv	Geometric critical values
hygei nv	Hypergeometric critical values
I ogni nv	Lognormal critical values
nbi ni nv	Negative binomial critical values
ncfi nv	Noncentral F critical values
ncti nv	Noncentral t critical values
ncx2i nv	Noncentral Chi-square critical values
i cdf	Parameterized inverse distribution routine
norminv	Normal (Gaussian) critical values
poi ssi nv	Poisson critical values
rayl inv	Rayleigh critical values
ti nv	Student's t critical values
uni di nv	Discrete uniform critical values
uni finv	Continuous uniform critical values
wei bi nv	Weibull critical values

Random Number Generators

bet ar nd	Beta random numbers
bi nor nd	Binomial random numbers

Random Number Generators (Continued)

chi 2rnd	Chi-square random numbers
exprnd	Exponential random numbers
gamrnd	F random numbers
geornd	Gamma random numbers
hyger nd	Geometric random numbers
I ognr nd	Hypergeometric random numbers
nbi nr nd	Negative binomial random numbers
ncf rnd	Noncentral F random numbers
nct rnd	Noncentral t random numbers
ncx2rnd	Noncentral Chi-square random numbers
nor mnd	Normal (Gaussian) random numbers
poi ssrnd	Poisson random numbers
rayl rnd	Rayleigh random numbers
random	Parameterized random number routine
trnd	Student's t random numbers
uni drnd	Discrete uniform random numbers
uni frnd	Continuous uniform random numbers
wei brnd	Weibull random numbers

Moments of Distribution Functions	
bet ast at	Beta mean and variance
bi nost at	Binomial mean and variance
chi 2st at	Chi-square mean and variance
expst at	Exponential mean and variance
f st at	F mean and variance
ganst at	Gamma mean and variance
geost at	Geometric mean and variance
hygest at	Hypergeometric mean and variance
I ognst at	Lognormal mean and variance
nbi nst at	Negative binomial mean and variance
ncf st at	Noncentral F mean and variance
nct st at	Noncentral t mean and variance
ncx2st at	Normal (Gaussian) mean and variance
nor mst at	Poisson mean and variance
poi sst at	Rayleigh mean and variance
rayl st at	Student's t mean and variance
t st at	Discrete uniform mean and variance
uni dst at	Continuous uniform mean and variance
uni fst at	Weibull mean and variance
wei bst at	

Descriptive Statistics

cor r coef	Correlation coefficients (in MATLAB)
cov	Covariance matrix (in MATLAB)
geomean	Geometric mean
har mmean	Harmonic mean
i qr	Interquartile range
kurt osi s	Sample kurtosis
mad	Mean absolute deviation
mean	Arithmetic average (in MATLAB)
medi an	50th percentile (in MATLAB)
moment	Central moments of all orders
nanmax	Maximum ignoring missing data
nanmean	Median ignoring missing data
nanmedi an	Minimum ignoring missing data
nanmi n	Standard deviation ignoring missing data
nanst d	Sum ignoring missing data
nansum	Empirical percentiles of a sample
prctile	Sample range
range	Sample skewness
skewness	Standard deviation (in MATLAB)
st	Trimmed mean
tri mmean	Variance
var	

Statistical Plotting	
boxpl ot	Box plots
er rorbar	Error bar plot
f surf ht	Interactive contour plot of a function
gl i ne	Interactive line drawing
gname	Interactive point labeling
I sl i ne	Add least-squares fit line to plotted data
nor mpl ot	Normal probability plots
par et o	Pareto charts
qqpl ot	Quantile-Quantile plots
rcopl ot	Regression case order plot
ref curve	Reference polynomial
ref I i ne	Reference line
surf ht	Interactive interpolating contour plot
wei bpl ot	Weibull plotting

Statistical Process Control

capabl e	Quality capability indices
capapl ot	Plot of process capability
ewmpl ot	Exponentially weighted moving average plot
hi stfit	Histogram and normal density curve
nornspec	Plot normal density between limits

Statistical Process Control (Continued)	
schart	Time plot of standard deviation
xbarpl ot	Time plot of means

Cluster Analysis

cl ust er	Create clusters from I i nkage output
cl ust er dat a	Create clusters from a dataset
cophenet	Calculate the cophenetic correlation coefficient
dendr ogr am	Plot a hierarchical tree in a dendrogram graph
i nconsi st ent	Calculate the inconsistency values of objects in a cluster hierarchy tree
I i nkage	Link objects in a dataset into a hierarchical tree of binary clusters
pdi st	Calculate the pairwise distance between objects in a dataset
squar ef orm	Reformat output of pdi st function from vector to square matrix
zscore	Normalize a dataset before calculating the distance

Linear Models	
anova1	One-way Analysis of Variance (ANOVA)
anova2	Two-way Analysis of Variance
I scov	Regression given a covariance matrix (in MATLAB)

Linear Models (Continued)

pol yconf	Polynomial prediction with confidence intervals
pol yfit	Polynomial fitting (in MATLAB)
pol yval	Polynomial prediction (in MATLAB)
regress	Multiple linear regression
ridge	Ridge regression
rst ool	Response surface tool
stepwi se	Stepwise regression GUI

Nonlinear Regression

nl infit	Nonlinear least-squares fitting
nl i nt ool	Prediction graph for nonlinear fits
nl parci	Confidence intervals on parameters
nl pr edci	Confidence intervals for prediction
nnl s	Nonnegative least squares (in MATLAB)

Design of Experiments

cor dexch	D-optimal design using coordinate exchange
daugnent	D-optimal augmentation of designs
dcovary	D-optimal design with fixed covariates
ff 2 n	Two-level full factorial designs
ful If fact	Mixed level full factorial designs

Design of Experiments (Continued)

hadanmr d Hadamard designs (in MATLAB)
rowexch D-optimal design using row exchange

Principal Components Analysis

barttest	Bartlett's test
pcacov	PCA from covariance matrix
pcares	Residuals from PCA
pri ncomp	PCA from raw data matrix

Hypothesis Tests

ranksum	Wilcoxon rank sum test
si gnr ank	Wilcoxon signed rank test
si gnt est	Sign test for paired samples
ttest	One sample t-test
ttest 2	Two sample t-test
ztest	Z-test

File I/ 0

caser ead	Read casenames from a file
casewrite	Write casenames from a string matrix to a file

File I/ O (Continued)

t bl read	Retrieve tabular data from the file system
tbl write	Write data in tabular form to the file system

Demonstrations	
di sttool	Interactive exploration of distribution functions
randt ool	Interactive random number generation
pol yt ool	Interactive fitting of polynomial models
rsmdem	Interactive process experimentation and analysis

Data	
census. mat	U. S. Population 1790 to 1980
ci ti es. mat	Names of U.S. metropolitan areas
di scrim mat	Classification data
gas. mat	Gasoline prices
hal d. mat	Hald data
hogg. mat	Bacteria counts from milk shipments
I awdat a. mat	GPA versus LSAT for 15 law schools
mil eage. mat	Mileage data for three car models from two factories
moore. mat	Five factor - one response regression data
parts. mat	Dimensional runout on 36 circular parts
popcorn. mat	Data for popcorn example (anova2, fri edman)

Data (Continued)

pol ydat a. mat	Data for pol yt ool demo
react i on. mat	Reaction kinetics data
sat. dat	ASCII data for t bl read example

Purpose One-way Analysis of Variance (ANOVA).

Syntax	$\mathrm{p}=\operatorname{anoval}(\mathrm{X})$
	$p=\operatorname{anoval}(\mathrm{X}$, group $)$
	$\mathrm{p}=$ anoval(X, group, ' di spl ayopt' $)$
	[$\mathrm{p}, \mathrm{table} \mathrm{e}=$ anoval(...)
	[$\mathrm{p}, \mathrm{table}$, stats] $=$ anoval(...)

Description
$p=\operatorname{anoval}(X)$ performs a balanced one-way ANOVA for comparing the means of two or more columns of data in the m-by-n matrix X, where each column represents an independent sample containing m mutually independent observations. The function returns the p-value for the null hypothesis that all samples in X are drawn from the same population (or from different populations with the same mean).

If the p-value is near zero, this casts doubt on the null hypothesis and suggests that at least one sample mean is significantly different than the other sample means. The choice of a critical p-value to determine whether the result is judged "statistically significant" is left to the researcher. It is common to declare a result significant if the p-value is less than 0.05 or 0.01 .

The anoval function displays two figures. The first figure is the standard ANOVA table, which divides the variability of the data in X into two parts:

- Variability due to the differences among the column means (variability between groups)
- Variability due to the differences between the data in each column and the column mean (variability within groups)

The ANOVA table has six columns:

- The first shows the source of the variability.
- The second shows the Sum of Squares (SS) due to each source.
- The third shows the degrees of freedom (df) associated with each source.
- The fourth shows the Mean Squares (MS) for each source, which is the ratio SS/df.
- The fifth shows the F statistic, which is the ratio of the MS's.
- The sixth shows the p-value, which is derived from the cdf of F. As F increases, the p-value decreases.

The second figure displays box plots of each column of X . Large differences in the center lines of the box plots correspond to large values of F and correspondingly small p-values.
$\mathrm{p}=$ anova1(X , group) uses the values in gr oup (a character array or cell array) as labels for the box plot of the samples in X , when X is a matrix. Each row of gr oup contains the label for the data in the corresponding column of X, so gr oup must have length equal to the number of columns in X .

When X is a vector, anoval performs a one-way ANOVA on the samples contained in X, as indexed by input gr oup (a vector, character array, or cell array). Each element in group identifies the group (i.e., sample) to which the corresponding element in vector Xbelongs, so gr oup must have the same length as X . The labels contained in gr oup are al so used to annotate the box plot. The vector-input form of anoval does not require equal numbers of observations in each sample, so it is appropriate for unbal anced data.

It is not necessary to label samples sequentially ($1,2,3, \ldots$). For example, if X contains measurements taken at three different temperatures, $-27^{\circ}, 65^{\circ}$, and 110°, you could use these numbers as the sample labels in gr oup. If a row of group contains an empty cell or empty string, that row and the corresponding observation in X are disregarded. NaNs in either input are similarly ignored.
$\mathrm{p}=$ anova1(X , group, ' di spl ayopt') enables the ANOVA table and box plot displays when 'di spl ayopt ' is ' on' (default) and suppresses the displays when 'di spl ayopt' is ' of f '.
[p, t table] $=$ anoval(\ldots) returns the ANOVA table (including column and row labels) in cell array tabl e. (You can copy a text version of the ANOVA table to the clipboard by using the Copy Text item on the Edit menu.)
[p, table, stats] = anova1(...) returns a stats structure that you can use to perform a follow-up multiple comparison test. The anoval test evaluates the hypothesis that the samples all have the same mean against the alternative that the means are not all the same. Sometimes it is preferable to perform a test to determine which pairs of means are significantly different, and which are not. You can use the mul t compare function to perform such tests by supplying the stats structure as input.

Assumptions

The ANOVA test makes the following assumptions about the data in X :

- All sample populations are normally distributed.
- All sample populations have equal variance.
- All observations are mutually independent.

The ANOVA test is known to be robust to modest violations of the first two assumptions.

Examples

Example 1

The five columns of X are the constants one through five plus a random normal disturbance with mean zero and standard deviation one.

```
X = meshgri d( 1: 5)
X =
\begin{tabular}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 4 & 5
\end{tabular}
X = X + normmd(0, 1, 5, 5)
X =
\begin{tabular}{lllll}
2.1650 & 3.6961 & 1.5538 & 3.6400 & 4.9551 \\
1.6268 & 2.0591 & 2.2988 & 3.8644 & 4.2011 \\
1.0751 & 3.7971 & 4.2460 & 2.6507 & 4.2348 \\
1.3516 & 2.2641 & 2.3610 & 2.7296 & 5.8617 \\
0.3035 & 2.8717 & 3.5774 & 4.9846 & 4.9438
\end{tabular}
p = anoval(X)
p =
```

5. 9952e- 005

		ANOVA Table				
		SS	df	MS	F	Prob>F
Source	SS					
Columns	32.93	4	8.232	11.26	$5.995 \mathrm{e}-005$	
Error	14.62	20	0.7312			
Total	47.55	24				

The very small p-value of $6 e-5$ indicates that differences between the column means are highly significant. The probability of this outcome under the null hypothesis (i.e., the probability that samples actually drawn from the same population would have means differing by the amounts seen in X) is less than 6 in 100,000. The test therefore strongly supports the alternate hypothesis, that one or more of the samples are drawn from populations with different means.

Example 2

The following example comes from a study of the material strength of structural beams in Hogg (1987). The vector st r engt h measures the deflection of a beam in thousandths of an inch under 3,000 pounds of force. Stronger beams deflect less. The civil engineer performing the study wanted to determine whether the strength of steel beams was equal to the strength of two more expensive alloys. Steel is coded ' st ' in the vector al I oy. The other materials are coded ' al 1' and ' al 2'.

```
strength =[\begin{array}{llllllllllllllllll}{82}&{86}&{79}&{83}&{84}&{85}&{86}&{87}&{74}&{82}&{78}&{75}&{76}&{77}&{79}&{\ldots}\end{array})
    79 77 78 82 79];
alloy = {'st','st','st','st','st','st','st','st',...
    'al 1',' al 1',' al 1',' al 1',' al 1',' al 1',...
    ' al 2',' al 2',' al 2', ' al 2',' al 2',' al 2' };
```

Though al I oy is sorted in this example, you do not need to sort the grouping variable.

```
p = anoval(strength, al loy)
p =
```

1. $5264 \mathrm{e}-004$

| | | | | | |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: |
| | | ANOVA Table | | | |
| Source | SS | df | MS | F | Prob>F |
| Groups | 184.8 | 2 | 92.4 | 15.4 | 0.0001526 |
| Error | 102 | 17 | 6 | | |
| Total | 286.8 | 19 | | | |

The p-value indicates that the three alloys are significantly different. The box plot confirms this graphically and shows that thesteel beams deflect morethan the more expensive alloys.

References Hogg, R. V., and J. Ledolter. Engineering Statistics. MacMillan Publishing Company, 1987.

See Also anova2, anovan, boxpl ot , ttest

Purpose Two-way Analysis of Variance (ANOVA).

Syntax

```
p = anova2(X,reps)
p = anova2(X, reps,' di spl ayopt')
[p,table] = anova2(...)
[p,table,stats] = anova2(...)
```

anova2(X, reps) performs a balanced two-way ANOVA for comparing the means of two or more columns and two or more rows of the observations in X. The data in different columns represent changes in factor A. The data in different rows represent changes in factor B . If there is more than one observation for each combination of factors, input r eps indicates the number of replicates in each "cell," which much be constant. (F or unbalanced designs, use anovan.)

The matrix bel ow shows the format for a set-up where column factor A has two levels, row factor B has three levels, and there are two replications (r eps = 2). The subscripts indicate row, column, and replicate, respectively.

When reps is 1 (default), anova2 returns two p-values in vector p :
1 The p-value for the null hypothesis, $H_{O A}$, that all samples from factor A (i.e., all column-samples in X) are drawn from the same population

2 The p-value for the null hypothesis, $\mathrm{H}_{0 B}$, that all samples from factor B (i.e., all row-samples in X) are drawn from the same population

When reps is greater than 1 , anova2 returns a third p-value in vector p :
3 The p-value for the null hypothesis, $\mathrm{H}_{0 A B}$, that the effects due to factors A and B are additive (i.e., that there is no interaction between factors A and B)

If any p-value is near zero, this casts doubt on the associated null hypothesis. A sufficiently small p-value for $\mathrm{H}_{0 A}$ suggests that at least one column-sample mean is significantly different that the other column-sample means; i.e., there is a main effect due to factor A. A sufficiently small p-value for $H_{0 B}$ suggests that at least one row-sample mean is significantly different than the other row-sample means; i.e., there is a main effect due to factor B . A sufficiently small p-value for $\mathrm{H}_{0 A B}$ suggests that there is an interaction between factors A and B. The choice of a limit for the p-value to determine whether a result is "statistically significant" is left to the researcher. It is common to declare a result significant if the p-value is less than 0.05 or 0.01 .
anova2 also displays a figure showing the standard ANOVA table, which divides the variability of the data in Xinto three or four parts depending on the value of r eps:

- The variability due to the differences among the column means
- The variability due to the differences among the row means
- The variability due to the interaction between rows and columns (if reps is greater than its default value of one)
- The remaining variability not explained by any systematic source

The ANOVA table has five columns:

- The first shows the source of the variability.
- The second shows the Sum of Squares (SS) due to each source.
- The third shows the degrees of freedom (df) associated with each source.
- The fourth shows the Mean Squares (MS), which is the ratio SS/df.
- The fifth shows the F statistics, which is the ratio of the mean squares.
p = anova2(X, reps, ' di spl ayopt') enables the ANOVA table display when ' di spl ayopt ' is ' on' (default) and suppresses the display when ' di spl ayopt ' is ' of f '.

Examples

[p, table] = anova2(...) returns the ANOVA table (including column and row labels) in cell array table. (Y ou can copy a text version of the ANOVA table to the clipboard by using the Copy Text item on the Edit menu.)
[p, table, stats] = anova2(...) returns a stat structure that you can use to perform a follow-up multiple comparison test.

The anova2 test evaluates the hypothesis that the row, column, and interaction effects are all the same, against the alternative that they are not all the same. Sometimes it is preferable to perform a test to determine which pairs of effects are significantly different, and which are not. You can use the mul t compare function to perform such tests by supplying the st at s structure as input.

The data below come from a study of popcorn brands and popper type (Hogg 1987). The columns of the matrix popcor n are brands (Gourmet, National, and Generic). The rows are popper type (Oil and Air.) The study popped a batch of each brand three times with each popper. The values are the yield in cups of popped popcorn.

I oad popcorn
popcorn

```
popcorn =
```

5. $5000 \quad 4.5000 \quad 3.5000$
6. 5000
7. 5000
8. 0000
9. 0000
10. 0000
11. 0000
12. $5000 \quad$ 5. 0000
13. 0000
$\begin{array}{lll}7.0000 & 5.5000 & 5.0000\end{array}$
14. 0000
15. 0000
16. 5000
$\mathrm{p}=\operatorname{anova} 2($ popcor $n, 3)$
$p=$
17. 0000
18. 0001
19. 7462

Reference

See Also anova1, anovan

Purpose	N -way Analysis of Variance (ANOVA).
Syntax	```p = anovan(X, group) p = anovan(X,group,' model ') p = anovan(X, group, 'model ', sstype) p = anovan(X,group, 'model ', sstype, gnames) p = anovan(X, group,' model ', sstype, gnames,' di spl ayopt') [p,table] = anovan(...) [p,table,stats] = anovan(...) [p,table, stats,terms] = anovan(...)```
Description	$\mathrm{p}=\operatorname{anovan}(\mathrm{X}$, group) performs a balanced or unbalanced multi-way ANOVA for comparing the means of the observations in vector X with respect to N different factors. The factors and factor levels of the observations in X are assigned by the cell array group. Each of the N cells in group contains a list of factor levels identifying the observations in X with respect to one of the N factors. The list within each cell can be a vector, character array, or cell array of strings, and must have the same number of elements as X. As an example, consider the x and gr oup inputs below.
	In this case, anovan(X, group) is a three-way ANOVA with two levels of each factor. E very observation in X is identified by a combination of factor levels in gr oup. If the factors are A, B, and C, then observation $\times 1$ is associated with: - Level 1 of factor A - Level ' hi ' of factor B - Level ' may' of factor C Similarly, observation $x 6$ is associated with: - Level 2 of factor A - Level ' hi ' of factor B - Level ' j une' of factor C

Output vector p contains p -values for the null hypotheses on the N main effects. Element p(1) contains the p-value for the null hypotheses, $\mathrm{H}_{0 \mathrm{~A}}$, that samples at all levels of factor A are drawn from the same population, element $\mathrm{p}(2)$ contains the p -value for the null hypotheses, $\mathrm{H}_{0 B}$, that samples at all levels of factor B are drawn from the same population, and so on.

If any p-value is near zero, this casts doubt on the associated null hypothesis. For example, a sufficiently small p-value for $\mathrm{H}_{0 \mathrm{~A}}$ suggests that at least one A-sample mean is significantly different that the other A-sample means; i.e., there is a main effect due to factor A. The choice of a limit for the p-value to determine whether a result is "statistically significant" is left to the researcher. It is common to dedare a result significant if the p-value is less than 0.05 or 0.01 .
anovan also displays a figure showing the standard ANOVA table, which by default divides the variability of the data in X into:

- The variability due to differences between the levels of each factor accounted for in the model (one row for each factor)
- The remaining variability not explained by any systematic source

The ANOVA table has six columns:

- The first shows the source of the variability.
- The second shows the Sum of Squares (SS) due to each source.
- The third shows the degrees of freedom (df) associated with each source.
- The fourth shows the Mean Squares (MS), which is the ratio SS/df.
- The fifth shows the F statistics, which is the ratio of the mean squares.
- The sixth shows the p-values for the F statistics.
$\mathrm{p}=\operatorname{anovan}(\mathrm{X}$, group, ' nodel ' $)$ performs the ANOVA using the model specified by ' nodel ' , where' nodel ' can be'linear',' interaction',' full', or an integer or vector. The default 'I i near ' model computes only the p-values for the null hypotheses on the N main effects. The ' inter action' model computes the p-values for null hypotheses on the N main effects and the $\binom{N}{2}$ two-factor interactions. The ' full' model computes the p-values for null hypotheses on the N main effects and interactions at all levels.

For an integer value of ' model ' , $\mathrm{k}(\mathrm{k} \leq \mathrm{N})$, anovan computes all interaction levels through the k th level. The values $k=1$ and $k=2$ are equivalent to the 'I inear' and 'inter acti on' specifications, respectively, while the value $k=N$ is equivalent to the ' full' specification.

For more precise control over the main and interaction terms that anovan computes, ' model ' can specify a vector containing one element for each main or interaction term to include in the ANOVA model. Each vector element encodes the corresponding ANOVA term as the decimal equivalent of an N-bit number, where N is the number of factors. The table bel ow illustrates the coding for a 3-factor ANOVA.

3-bit Code	Decimal Value	Corresponding ANOVA Terms
$\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$	1	Main term A
$\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$	2	Main term B
$\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$	4	Main term C
$\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$	3	Interaction term AB
$\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$	6	Interaction term $B C$
$\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$	5	Interaction term $A C$
$\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$	7	Interaction term $A B C$

For example, if ' model ' is the vector [$\left.\begin{array}{lll}2 & 4 & 6\end{array}\right]$, then output vector p contains the p-values for the null hypotheses on the main effects B and C and the interaction effect BC, in that order. A simple way to generate the ' model ' vector is to modify the ter nゅ output, which codes the terms in the current model using the format described above. If anovan returned [$\left.\begin{array}{ll}2 & 4 \\ \text { 6] }\end{array}\right]$ for terns, for example, and there was no significant result for interaction BC, you could recompute the ANOVA on just the main effects B and C by specifying [2 4] for ' model ' .
p = anovan(X, group, ' model ' , sst ype) computes the ANOVA using the type of sum-of-squares specified by sst ype, which can be 1,2 , or 3 to designate Type 1, Type 2, or Type 3 sum-of-squares, respectively. The default is 3. The value of sst ype only influences computations on unbalanced data.

The sum of squares for any term is determined by comparing two models. The Type 1 sum of squares for a term is the reduction in residual sum of squares obtained by adding that term to a fit that already includes the terms listed before it. The Type 2 sum of squares is the reduction in residual sum of squares obtained by adding that term to a model consisting of all other terms that do not contain theterm in question. The Type 3 sum of squares is the reduction in residual sum of squares obtained by adding that term to a model containing all other terms, but with their effects constrained to obey the usual "sigma restrictions" that make models estimable.

Suppose we are fitting a model with two factors and their interaction, and that the terms appear in the order $A, B, A B$. Let $R(\cdot)$ represent the residual sum of squares for a model, so for example $R(A, B, A B)$ is the residual sum of squares fitting the whole model, $R(A)$ is the residual sum of squares fitting just the main effect of A, and $R(1)$ is the residual sum of squares fitting just the mean. The three types of sums of squares are as follows:

Term	Type $\mathbf{1} \mathbf{S S}$	Type 2 SS	Type 3 SS
A	$R(1)-R(A)$	$R(B)-R(A, B)$	$R(B, A B)-R(A, B, A B)$
B	$R(A)-R(A, B)$	$R(A)-R(A, B)$	$R(A, A B)-R(A, B, A B)$
$A B$	$R(A, B)-R(A, B, A B)$	$R(A, B)-R(A, B, A B)$	$R(A, B)-R(A, B, A B)$

The models for Type 3 sum of squares have sigma restrictions imposed. This means, for example, that in fitting $R(B, A B)$, the array of $A B$ effects is constrained to sum to 0 over A for each value of B, and over B for each value of A.
$\mathrm{p}=\operatorname{anovan}(\mathrm{X}$, group, ' model ' , sst ype, gnames) uses the string values in character array gnames to label the N experimental factors in the ANOVA table. The array can be a string matrix with one row per observation, or a cell array of strings with one element per observation. When gnanes is not specified, the default labels ' X1',' X2',' X3', ..., XN ' are used.
p = anovan(X , group, ' model ' , sstype, gnames, ' di spl ayopt ') enables the ANOVA table display when ' di spl ayopt ' is ' on' (default) and suppresses the display when ' di spl ayopt ' is ' off'.
[p, t abl e] = anovan(. . .) returns the ANOVA table (including factor labels) in cell array tabl e. (Y ou can copy a text version of the ANOVA table to the clipboard by using the Copy Text item on the Edit menu.)
[p,table,stats] = anovan(...) returns a stat s structure that you can use to perform a follow-up multiple comparison test.

The anovan test evaluates the hypothesis that the different levels of a factor (or more generally, a term) have the same effect, against the alternative that they do not all have the same effect. Sometimes it is preferable to perform a test to determine which pairs of levels are significantly different, and which are not. You can use the mul t compar e function to perform such tests by supplying the st at s structure as input.
[p, t able, stats, terns] = anovan(...) returns the main and interaction terms used in the ANOVA computations. The terms are encoded in output vector terns using the same format described above for input ' model ' . When ' model ' itself is specified in this vector format, the vector returned in ter ns is identical.

Examples

In the previous section we used anova2 to analyze the effects of two factors on a response in a balanced design. F or a design that is not balanced, we can use anovan instead.

The dataset car bi g contains a number of measurements on 406 cars. Let's study how the mileage depends on where and when the cars were made.

```
I oad carbig
anovan(MPG, \{org when\}, 2, 3, \{' Origin';'Mf date' \})
ans \(=\)
    0
    0
    0. 30587
```

Thep-value for the interaction term is not small, indicating little evidence that the effect of the car's year or manufacture (when) depends on where the car was made (org). The linear effects of those two factors, though, are significant.

- Figure No. 1: N-Way ANOVA						
Eile Edit View Insert Iools Window Help						
Analysis of Variance						
Source	Sum Sq	d.f	Mean Sq	F	Prob>F	\wedge
Origin	5727.2	2	2863.58	115.09		
Mfg date	4710.3	2	2355.15	94.65		
Origin*Mfg date	120.5	4	30.12	1.21	0.3059	
Error	9679.1	389	24.88			
Total	24252.6	397				
Constrained (Type III) sums of squares.						

Reference
 Hogg, R. V. and J. Ledolter. Engineering Statistics. MacMillan Publishing Company, 1987.

See Also
anova1, anova2, mul t compare

Purpose

Interactive plot for fitting and predicting analysis of covariance models.

Syntax
Description

```
aoct ool (x, y, g)
aoctool ( x, y, g, al pha)
aoctool ( x, y, g, al pha, xname, yname, gname)
aoct ool ( x,y,g, al pha, xname, yname, gname,' di spl ayopt ' )
aoct ool ( x, y, g, al pha, xname, yname, gname,' di spl ayopt ' ,' model ' )
h = aoctool (...)
[h, at ab, ct ab] = aoctool (...)
[h, atab, ctab, stats] = aoctool (...)
```

aoct ool (x, y, g) fits a separate line to the column vectors, x and y, for each group defined by the values in the array g. These types of models are known as one-way analysis of covariance (ANOCOVA) models. The output consists of three figures:

- An interactive graph of the data and prediction curves
- An ANOVA table
- A table of parameter estimates

You can use the figures to change models and to test different parts of the model. M ore information about interactive use of the aoct ool function appears on "The aoctool Demo" on page 1-161.
aoct ool (x, y, g, al pha) determines the confidence levels of the prediction intervals. The confidence level is $100 *$ (1 - al pha) \%. The default value of al pha is 0.05 .
aoct ool (x, y, g, al pha, xname, yname, gname) specifies the name to use for the x, y, and g variables in the graph and tables. If you enter simple variable names for the x, y, and g arguments, the aoctool function uses those names. If you enter an expression for one of these arguments, you can specify a name to use in place of that expression by supplying these arguments. F or example, if you enter m : : 2) as the x argument, you might choose to enter ' Col 2' as the xname argument.
aoct ool (x, y, g, al pha, xname, yname, gname, ' di spl ayopt ') enables the graph and table displays when ' di spl ayopt ' is ' on' (default) and suppresses those displays when 'di spl ayopt' is 'off'.
aoct ool ($\mathrm{x}, \mathrm{y}, \mathrm{g}$, al pha, xname, yname, gname, ' di spl ayopt ' , ' model ') specifies the initial model to fit. The value of ' model ' can be any of the following:

- ' same mean' - fit a single mean, ignoring grouping
- 'separate neans' - fit a separate mean to each group
- ' same I i ne' - fit a single line, ignoring grouping
- 'parallel Iines' - fit a separatelineto each group, but constrain thelines to be parallel
- ' separ at e I i nes' - fit a separate line to each group, with no constraints
$h=$ aoctool (...) returns a vector of handles to the line objects in the plot.
[h , at ab, ct ab] = aoct ool (. .) returns cell arrays containing the entries in ANOVA table (at ab) and the table of coefficient estimates (ct ab). (Y ou can copy a text version of either table to the clipboard by using the Copy Text item on the Edit menu.)
[h, at ab, ct ab, st ats] = aoct ool (...) returns a stats structure that you can use to perform a follow-up multiple comparison test. The ANOVA table output includes tests of the hypotheses that the slopes or intercepts are all the same, against a general alternative that they are not all the same. Sometimes it is preferable to perform a test to determine which pairs of values are significantly different, and which are not. Y ou can use the mul t compare function to perform such tests by supplying the st at s structure as input. You can test either the slopes, the intercepts, or population marginal means (the heights of the curves at the mean x value).

Example This example illustrates how to fit different models non-interactively. First, we load the smaller car dataset and fit a separate-slopes model, then examine the coefficient estimates.

$$
\begin{aligned}
& {[\mathrm{h}, \mathrm{a}, \mathrm{c}, \mathrm{~s}]=\text { aoct ool (Wei ght, MPG, Mbdel Year, } 0.05, \ldots} \\
& \mathrm{c}(:, 1: 2)
\end{aligned}
$$

```
ans =
' Term' ' Esti mat e'
' I nt ercept ' [ 45.97983716833132]
' 70' [-8.58050531454973]
76' [-3.89017396094922]
82' [ 12.47067927549897]
' Sl ope' [ - 0.00780212907455]
' 70' [ 0.00195840368824]
76' [ 0.00113831038418]
82' [-0.00309671407243]
```

Roughly speaking, the lines relating MPG to Wei ght have an intercept close to 45.98 and a slope close to -0.0078 . E ach group's coefficients are offset from these values somewhat. For instance, the intercept for the cars made in 1970 is 45.98-8.58 $=37.40$.

Next, we try a fit using parallel lines. (If we had examined the ANOVA table, we would have found that the parallel-lines fit is significantly worse than the separate-lines fit.)

```
[h, a, c, s] = aoct ool (Wei ght, MPG, Mbdel _Year, 0. 05, . . .
                                    '','','',' off','parallel Iines');
```

c(: 1: 2)
ans $=$

' Ter m'	' Esti mat e'
' Int er cept '	[43. 38984085130596]
' 70 '	$[-3.27948192983761]$
' 76^{\prime}	$[-1.35036234809006]$
' 82^{\prime}	$[4.62984427792768]$
' SI ope'	$[-0.00664751826198]$

Here we again have separate intercepts for each group, but this time the sl opes are constrained to be the same.

See Also
anova1, mul t compare, pol yt ool
Purpose Bartlett's test for dimensionality.

Syntax	ndi $m=\operatorname{barttest}(x$, al pha)
	$[$ ndi m prob, chi square $]=\operatorname{barttest}(x$, al pha $)$

Description ndi $m=$ barttest (x, al pha) returns the number of dimensions necessary to explain the nonrandom variation in the data matrix x, using the significance probability al pha. The dimension is determined by a series of hypothesis tests. The test for ndi $m=1$ tests the hypothesis that the variances of the data values along each principal component are equal, the test for ndi $m=2$ tests the hypothesis that the variances along the second through last components are equal, and so on.
[ndi m prob, chi square] = barttest (x, al pha) returns the number of dimensions, the significance values for the hypothesis tests, and the χ^{2} values associated with thetests.

Example

```
x = mynrnd([0 0],[1 0.99; 0.99 1], 20);
x(:,3:4) = mvnrnd([0 0],[1 0. 99; 0. 99 1], 20);
x(:,5: 6) = munrnd([0 0],[1 0.99; 0.99 1], 20);
[ndim prob] = barttest(x,0.05)
ndi m=
    3
prob =
            0
            0
            0
            0.5081
            0. }661
```

See Also
pri ncomp, pcacov, pcares

Purpose Beta cumulative distribution function (cdf).

Syntax
 $\mathrm{p}=\operatorname{bet} \operatorname{acdf}(\mathrm{X}, \mathrm{A}, \mathrm{B})$

Description $\quad \mathrm{p}=\operatorname{bet} \operatorname{acdf}(\mathrm{X}, \mathrm{A}, \mathrm{B})$ computes the beta cdf at each of the values in X using the corresponding parameters in A and B. Vector or matrix inputs for X, A, and B must all have the same size. A scalar input is expanded to a constant matrix with the same dimensions as the other inputs. The parameters in A and B must all be positive, and the values in X must lie on the interval [01].

The beta cdf for a given value x and given pair of parameters $a \operatorname{and} b$ is

$$
\mathrm{p}=\mathrm{F}(\mathrm{x} \mid \mathrm{a}, \mathrm{~b})=\frac{1}{\mathrm{~B}(\mathrm{a}, \mathrm{~b})} \int_{0}^{\mathrm{x}} \mathrm{t}^{\mathrm{a}-1}(1-\mathrm{t})^{\mathrm{b}-1} \mathrm{dt}
$$

where $B(\cdot)$ is the Beta function. The result, p, is the probability that a single observation from a beta distribution with parameters a and b will fall in the interval [0 x].

Examples

```
x = 0.1:0.2:0.9;
a = 2;
b = 2;
p = bet acdf(x, a, b)
p =
    0.0280}00.2160 0.5000 0.7840 0.9720 
a = [llll}12\mp@code{3}
p = bet acdf(0.5,a,a)
p =
```

0. 5000
1. 5000
2. 5000

See Also bet af it, bet ai nv, bet al i ke, bet apdf, bet ar nd, bet ast at, cdf

betafit

Purpose

Syntax

Description

Example

Parameter estimates and confidence intervals for beta distributed data.
phat $=$ betafit(x)
[phat, pci] = bet afit(x, al pha)
phat $=$ bet afit(x) computes the maximum likelihood estimates of the beta distribution parameters a and b from the data in vector x, where the beta cdf is given by

$$
F(x \mid a, b)=\frac{1}{B(a, b)} \int_{0}^{x} t^{a-1}(1-t)^{b-1} d t
$$

and $B(\cdot)$ is the Beta function. Theelements of x must lie in the interval ($\left.\begin{array}{ll}0 & 1\end{array}\right)$.
[phat, pci] = bet afit(x, al pha) returns confidence intervals on the a and b parameters in the 2-by-2 matrix pci. The first column of the matrix contains the lower and upper confidence bounds for parameter a, and the second column contains the confidence bounds for parameter b. The optional input argument al pha is a value in the range [0 1] specifying the width of the confidence intervals. By default, al pha is 0.05 , which corresponds to 95% confidence intervals.

This example generates 100 beta distributed observations. The true a and b parameters are 4 and 3, respectively. Compare these to the values returned in p . Note that the columns of ci both bracket the true parameters.

```
r = bet ar nd(4, 3, 100, 1);
[p,ci] = betafit(r, 0.01)
p =
    3.9010 2.6193
ci =
    2.5244 1.7488
    5.2776 3.4898
```

Reference	Hahn, Gerald J ., \& Shapiro, Samuel, S. Statistical Models in Engineering.
	J ohn Wiley \& Sons, New York. 1994. p. 95.
See Also	bet al i ke, mi e

betainv

Purpose Inverse of the beta cumulative distribution function.

Syntax $\quad X=$ bet ai $n v(P, A, B)$

Description

Algorithm

Examples

The bet ai nv function uses Newton's method with modifications to constrain steps to the allowable range for x , i.e., [0 1].

$$
\begin{aligned}
& p=\left[\begin{array}{lll}
0.01 & 0.5 & 0.99
\end{array}\right] ; \\
& x=\text { bet ai nv(} p, 10,5) \\
& x=
\end{aligned}
$$

0. 3726
1. 6742
2. 8981

According to this result, for a beta cdf with $a=10$ and $b=5$, a value less than or equal to 0.3726 occurs with probability 0.01 . Similarly, values less than or equal to 0.6742 and 0.8981 occur with respective probabilities 0.5 and 0.99 .

See Also bet afit,icdf

Purpose	Negative beta log-likelihood function.
Syntax	$\begin{aligned} & \text { l ogL = bet al i ke(parans, dat a) } \\ & {[\text { l ogL, avar] = bet al i ke(par ans, dat a) }} \end{aligned}$
Description	$\log \mathrm{L}=$ bet al $\mathrm{i} \mathrm{ke}($ par ans, dat a) returns the negative of the beta log-likelihood function for the beta parameters a and b specified in vector par ans and the observations specified in column vector dat a. The length of logL is the length of dat a.
	[I ogL, avar] = bet al i ke(par ans, dat a) also returns avar, which is the asymptotic variance-covariance matrix of the parameter estimates if the values in par ans are the maximum likelihood estimates. avar is the inverse of Fisher's information matrix. The diagonal elements of avar are the asymptotic variances of their respective parameters.
	bet al i ke is a utility function for maximum likelihood estimation of the beta distribution. The likelihood assumes that all the elements in the data sample are mutually independent. Since bet al i ke returns the negative beta log-likelihood function, minimizing bet al i ke using f minsear ch is the same as maximizing the likelihood.
Example	This example continues the bet af it example where we cal culated estimates of the beta parameters for some randomly generated beta distributed data.
	$r=$ bet ar nd(4, 3, 100, 1) ;
	[I ogl, avar] = betal i ke([3.9010 2. 6193], r)
	\| ogl $=$
	-33. 0514
	avar $=$
	0. 2856 0. 1528
	0. $1528 \quad 0.1142$
See Also	bet af it, f minsear ch, gam i ke, ml e, wei blike

betapdf

Purpose Beta probability density function (pdf).

Syntax $\quad Y=\operatorname{bet} \operatorname{apdf}(X, A, B)$

Description $\quad Y=$ bet apdf (X, A, B) computes the beta pdf at each of the values in X using the corresponding parameters in A and B. Vector or matrix inputs for X, A, and B must all have the same size. A scalar input is expanded to a constant matrix with the same dimensions of the other inputs. The parameters in A and B must all be positive, and the values in X must lie on the interval [$\left.\begin{array}{ll}0 & 1\end{array}\right]$.

The beta probability density function for a given value x and given pair of parameters a and b is

$$
y=f(x \mid a, b)=\frac{1}{B(a, b)} x^{a-1}(1-x)^{b-1} I_{(0,1)}(x)
$$

where $B(\cdot)$ is the Beta function. The result, y, is the probability that a single observation from a beta distribution with parameters a and b will have value x. The indicator function $I_{(0,1)}(x)$ ensures that only values of x in the range (01) have nonzero probability. The uniform distribution on (01) is a degenerate case of the beta pdf where $\mathrm{a}=1$ and $\mathrm{b}=1$.

A likelihood function is the pdf viewed as a function of the parameters. M aximum likelihood estimators (MLEs) are the values of the parameters that maximize the likelihood function for a fixed value of x.

Examples

```
a =[0.5 1; 2 4]
a =
    0.5000 1.0000
    2. }0000\quad4.000
y = bet apdf (0.5,a, a)
y =
    0.6366 1.0000
    1. }5000\mathrm{ 2. }187
```

See Also bet acdf, bet af it, bet ai nv, bet al i ke, bet ar nd, bet ast at, pdf

Purpose Random numbers from the beta distribution.

Syntax
Description

$R=$ bet arnd($A, B)$
$R=\operatorname{bet} \operatorname{arnd}(A, B, m)$
$R=\operatorname{bet} \operatorname{ar} \operatorname{nd}(A, B, m n)$
$R=$ bet $\operatorname{ar} \operatorname{nd}(A, B)$ generates random numbers from the beta distribution with parameters specified by A and B. Vector or matrix inputs for A and B must have the same size, which is also the size of R. A scalar input for A or B is expanded to a constant matrix with the same dimensions as the other input.
$R=$ bet ar nd(A, B, m generates a matrix of size mcontaining random numbers from the beta distribution with parameters A and B, where mis a 1-by-2 vector containing the row and column dimensions of R.
$R=$ bet $\operatorname{ar} \operatorname{nd}(A, B, m n)$ generates an mby-n matrix containing random numbers from the beta distribution with parameters A and B.

Examples

```
a =[1 1;2 2];
b = [1 2; 1 2];
r = bet ar nd(a,b)
r =
    0.6987 0.6139
    0.9102 0.8067
r = bet ar nd( 10, 10, [ 1 5])
r =
    0.5974 0.4777 0.5538}00.5465 0.6327 
r = bet ar nd(4, 2, 2,3)
r =
\begin{tabular}{lll}
0.3943 & 0.6101 & 0.5768
\end{tabular}
0. 5990
0. 2760
0. 5474
```

See Also bet acdf, bet af it, bet ai nv, bet al i ke, bet apdf, bet ast at, rand, randt ool

betastat

Purpose Mean and variance for the beta distribution.

Syntax

Description
[M V] = betastat (A, B)
[$M \mathrm{~V}$] = bet ast at (A, B) returns the mean and variance for the beta distribution with parameters specified by A and B. Vector or matrix inputs for A and B must have the same size, which is also the size of Mand V. A scalar input for A or B is expanded to a constant matrix with the same dimensions as the other input.

The mean of the beta distribution with parameters a and b is $a /(a+b)$ and the variance is

$$
\frac{a b}{(a+b+1)(a+b)^{2}}
$$

Examples

If parameters a and b are equal, the mean is $1 / 2$.

```
a = 1: 6;
[mv] = betastat(a,a)
```

$\mathrm{m}=$
0. $5000 \quad 0.5000$
0. 5000
0. 5000
0. 5000
0. 5000
$\mathrm{v}=$
0. 0833
0. 0500
0. 0357
0. 0278
0. 0227
0. 0192

[^0]Purpose Binomial cumulative distribution function (cdf).

Syntax
 Y = bi nocdf($\mathrm{X}, \mathrm{N}, \mathrm{P}$)

Examples

If a baseball team plays 162 games in a season and has a 50-50 chance of winning any game, then the probability of that team winning more than 100 games in a season is:

1 - bi nocdf ($100,162,0.5$)
The result is 0.001 (i.e., 1-0.999). If a team wins 100 or more games in a season, this result suggests that it is likely that the team's true probability of winning any game is greater than 0.5.

See Also bi nofit, bi noi nv, bi nopdf, bi nornd, bi nost at, cdf

Purpose

Parameter estimates and confidence intervals for binomial data.

Syntax
\section*{Description}

phat $=$ bi nofit(x, n)
[phat, pci] = bi nofit(x, n)
[phat, pci] = bi nofit(x, n, al pha)

Example

Reference

See Also bi nocdf, bi noi nv, bi nopdf, bi nor nd, bi nost at, wle

Purpose	Inverse of the binomial cumulative distribution function (cdf).
Syntax	$\mathrm{X}=\mathrm{bi} \operatorname{noinv} \mathrm{nv}(\mathrm{Y}, \mathrm{N}, \mathrm{P})$
Description	$\mathrm{X}=$ bi noi $n v(\mathrm{Y}, \mathrm{N}, \mathrm{P})$ returns the smallest integer X such that the binomial cdf evaluated at X is equal to or exceeds Y. Y ou can think of Y as the probability of observing X successes in N independent trials where P is the probability of success in each trial. Each X is a positive integer less than or equal to N.
	Vector or matrix inputs for Y, N, and P must all have the same size. A scalar input is expanded to a constant matrix with the same dimensions as the other inputs. The parameters in N must be positive integers, and the values in both P and Y must lie on the interval [01].
Examples	If a baseball team has a 50-50 chance of winning any game, what is a reasonable range of games this team might win over a season of 162 games? We assume that a surprising result is one that occurs by chance once in a decade.
	bi noi nv([0.050 .95$], 162,0.5$)
	ans $=$
	7191
	This result means that in 90% of baseball seasons, a .500 team should win between 71 and 91 games.
See Also	bi nocdf, bi nof it, bi nopdf, bi nor nd, bi nost at, i cdf

binopdf

Purpose Binomial probability density function (pdf).

Syntax $\quad Y=$ bi $\operatorname{nopdf}(X, N, P)$

Description $\quad Y=$ bi nopdf (X, N, P) computes the binomial pdf at each of the values in X using the corresponding parameters in N and P. Vector or matrix inputs for X, N , and P must all have the same size. A scalar input is expanded to a constant matrix with the same dimensions of the other inputs.

The parameters in N must be positive integers, and the values in P must lie on the interval [0 1].

The binomial probability density function for a given value x and given pair of parameters n and p is

$$
y=f(x \mid n, p)=\left.\left(\frac{n}{x}\right)^{p^{x} q^{(1-x)}}\right|_{(0,1, \ldots, n)}(x)
$$

where $q=1-p$. The result, y, is the probability of observing x successes in n independent trials, where the probability of success in any given trial is p . The indicator function $I_{(0,1, \ldots, n)}(x)$ ensures that x only adopts values of $0,1, \ldots, n$.

Examples

A Quality Assurance inspector tests 200 circuit boards a day. If 2% of the boards have defects, what is the probability that the inspector will find no defective boards on any given day?
bi nopdf ($0,200,0.02$)
ans $=$
0.0176

What is the most likely number of defective boards the inspector will find?

```
y = bi nopdf([ 0: 200], 200, 0. 02);
[x,i] = max(y);
i
i =
    5
```

[^1]

binostat

Purpose Mean and variance for the binomial distribution.

Syntax
 [M V] = bi nostat (N, P)

Description

Examples

```
n = I ogspace( 1, 5, 5)
n =
    10 100 1000}10000 10000
[mv] = bi nostat(n, 1./n)
m}
            1 1rllll
v =
            0.9000 0.9900 0.9990}00.9999 1.0000 
[mv] = bi nostat(n, 1/2)
m}
            5 50
                            5 0
                            5 0 0
                                    5 0 0 0
                                    5 0 0 0 0
v =
    1. 0e+04 *
        lllll
```

See Also bi nocdf, bi nof it, bi noi nv, bi nopdf, bi nor nd

Purpose	Bootstrap statistics through resampling of data.
Syntax	```bootstat = bootstrp(nboot,' bootfun',d1, d2,...) [bootstat,bootsam] = bootstrp(...)```
Description	bootstat $=$ bootstrp(nboot,' boot fun', d1, d2, ...) draws nboot bootstrap samples from each of the input data sets, $\mathrm{d} 1, \mathrm{~d} 2$, etc., and passes the bootstrap samples to function boot f un for analysis. nboot must be a positive integer, and each input data set must contain the same number of rows, n. E ach bootstrap sample contains n rows chosen randomly (with replacement) from the corresponding input data set ($\mathrm{d} 1, \mathrm{~d} 2$, etc.).
	Each row of the output, boot st at, contains the results of applying boot f un to one set of bootstrap samples. If boot f un returns multipleoutputs, only thefirst is stored in boot st at. If the first output from boot f un is a matrix, the matrix is reshaped to a row vector for storage in boot st at .
	[boot st at, boot sam] = boot strap(. . .) returns a matrix of bootstrap indices, boot sam Each of the nboot columns in boot samcontains indices of the values that were drawn from the original data sets to constitute the corresponding bootstrap sample. F or example, if d1, d2, etc., each contain 16 values, and nboot $=4$, then boot samis a 16 -by- 4 matrix. The first column contains the indices of the 16 values drawn from d1, d 2 , etc., for the first of the four bootstrap samples, the second column contains the indices for the second of the four bootstrap samples, and so on. (The bootstrap indices are the same for all input data sets.)
Example	Correlate the LSAT scores and law-school GPA for 15 students. These 15 data points are resampled to create 1000 different data sets, and the correlation between the two variables is computed for each dataset.
	I oad I awdat a [boot st at, boot sam] = bootstrp(1000,' corrcoef', I sat, gpa);

boot st at (1:5, :)
ans $=$

1.0000	0.3021	0.3021	1.0000
1.0000	0.6869	0.6869	1.0000
1.0000	0.8346	0.8346	1.0000
1.0000	0.8711	0.8711	1.0000
1.0000	0.8043	0.8043	1.0000

bootsam(:, 1: 5)
ans $=$

4	7	5	12	8
1	11	10	8	4
11	9	12	4	2
11	14	15	5	15
15	13	6	6	2
6	8	4	3	8
8	2	15	8	6
13	10	11	14	5
1	7	12	14	14
1	11	10	1	8
8	14	2	14	7
11	12	10	8	15
1	4	14	8	1
6	1	5	5	12
2	12	7	15	12

hi st(bootstat(: 2))

The histogram shows the variation of the correlation coefficient across all the bootstrap samples. The sample minimum is positive, indicating that the relationship between LSAT score and GPA is not accidental.

boxplot

Purpose Box plots of a data sample.

Syntax	boxpl ot (X)
	boxpl ot (X , not ch)
	boxpl ot (X , not ch, ' sym)
	boxpl ot (X , not ch, ' sym, vert)
	boxpl ot (X , not ch, ' sym', vert, whi s)

Description

Examples

boxpl ot (X) produces a box and whisker plot for each column of X. The box has lines at the lower quartile, median, and upper quartile values. The whiskers are lines extending from each end of the box to show the extent of the rest of the data. Outliers are data with values beyond the ends of the whiskers. If there is no data outside the whisker, a dot is placed at the bottom whisker.
boxpl ot (X , not ch) with not ch $=1$ produces a notched-box plot. Notches graph a robust estimate of the uncertainty about the means for box-to-box comparison. The default, not ch $=0$, produces a rectangular box plot.
boxpl ot (X , not ch, ' sym) where symis a plotting symbol, affords control of the symbol for outliers. The default is ' + '. See MATLAB's Li neSpec property for information about the available marker symbols.
boxpl ot (X , not ch, ' sym, vert) with vert $=0$ creates horizontal boxes rather than the default vertical boxes (vert $=1$).
boxpl ot (X, not ch, ' sym, vert, whi s) enables you to specify the length of the "whiskers." whi s defines the length of the whiskers as a function of the inter-quartilerange (default $=1.5 *$ IQR). If whi $s=0$, then boxpl ot displays all data values outside the box using the plotting symbol, ' sym .

```
x1 = normmd(5, 1, 100, 1);
x2 = normmd(6, 1, 100, 1);
x = [x1 x2];
boxpl ot (x, 1)
```


boxplot

The difference between the means of the two columns of x is 1 . We can detect this difference graphically by observing that the notches in the boxpl ot do not overlap.

capable

Purpose Process capability indices.

Syntax	$p=$ capabl e(dat a, specs)
$[p, C p, C p k]=$ capabl e(dat a, specs)	

Description

Example
$p=c a p a b l e(d a t a, s p e c s)$ computes the probability that a sample, dat a, from some process falls outside the bounds specified in specs, a 2-element vector of the form [l ower upper].

The assumptions are that the measured values in the vector dat a are normally distributed with constant mean and variance and that the measurements are statistically independent.
[$\mathrm{p}, \mathrm{Cp}, \mathrm{Cpk}$] = capabl e(dat a, specs) additionally returns the capability indices Cp and Cpk.
C_{p} is the ratio of the range of the specifications to six times the estimate of the process standard deviation:

$$
C_{p}=\frac{U S L-L S L}{6 \sigma}
$$

For a process that has its average value on target, a C_{p} of 1 transl ates to a little more than one defect per thousand. Recently, many industries have set a quality goal of one part per million. This would correspond to $C_{p}=1.6$. The higher the value of C_{p}, the more capable the process.
C_{pk} is the ratio of difference between the process mean and the closer specification limit to three times the estimate of the process standard deviation:

$$
C_{p k}=\min \left(\frac{U S L-\mu}{3 \sigma}, \frac{\mu-\mathrm{LSL}}{3 \sigma}\right)
$$

where the process mean is μ. F or processes that do not maintain their average on target, C_{pk} is a more descriptive index of process capability.

Imagine a machined part with specifications requiring a dimension to be within three thousandths of an inch of nominal. Suppose that the machining process cuts too thick by one thousandth of an inch on average and also has a

capable

standard deviation of one thousandth of an inch. What are the capability indices of this process?

```
data = normmd(1, 1, 30, 1);
[p,Cp,Cpk] = capabl e(dat a,[-3 3]);
i ndi ces = [p Cp Cpk]
indi ces =
    0.0172
    1. }114
0.7053
```

We expect 17 parts out of a thousand to be out-of-specification. Cpk is less than Cp because the process is not centered.

Reference

See Also capapl ot, hi stfit

capaplot

Purpose Process capability plot.

Syntax	$p=$ capapl ot (dat a, specs $)$
$[p, h]=$ capapl ot (dat $a, s p e c s)$	

Description

Example
$p=c a p a p l$ ot (dat a, specs) estimates the mean and variance of the observations in input vector dat a, and plots the pdf of the resulting T distribution. The observations in dat a are assumed to be normally distributed. The output, p, is the probability that a new observation from the estimated distribution will fall within the range specified by the two-element vector specs. The portion of the distribution between the lower and upper bounds specified in specs is shaded in the plot.
[$\mathrm{p}, \mathrm{h}]=$ capapl ot (dat a, specs) additionally returns handles to the plot elements in h .

Imagine a machined part with specifications requiring a dimension to be within 3 thousandths of an inch of nominal. Suppose that the machining process cuts too thick by one thousandth of an inch on average and also has a standard deviation of one thousandth of an inch.

```
dat a = normmd( 1, 1, 30, 1);
p = capapl ot(data,[-3 3])
p =
```

0. 9784

The probability of a new observation being within specs is 97.84%.

See Also capable, histfit

Purpose	Read casenames from a file.
Syntax	$\begin{aligned} & \text { names }=\text { caseread(' fil ename' }) \\ & \text { names }=\text { caseread } \end{aligned}$
Description	names = caseread('filename') reads the contents of filename and returns a string matrix of names. fil enane is the name of a file in the current directory, or the complete pathname of any file elsewhere. caser ead treats each line as a separate case. names = caser ead displays the Select File to Open dialog box for interactive selection of the input file.
Example	Read the file mont hs. dat created using the function caseur i te on the next page. type months. dat J anuary February March April May names = caseread('months. dat') names $=$ J anuary February March April May
See Also	t bl read, gname, casewrite, tdfread

Purpose	Write casenames from a string matrix to a file.
Syntax	```casewrite(strmat,'fil ename') casewrite(strmat)```
Description	casewrite(strmat, 'filename') writes the contents of string matrix strmat to fil ename. Each row of strmat represents one casename. fil ename is the name of a file in the current directory, or the complete pathname of any file elsewhere. casewrite writes each name to a separate line in fil ename. casewrite(strmat) displays the Select File to Write dialog box for interactive specification of the output file.
Example	```strmat = str2mat('J anuary',' February','March','April','May') strmat = J anuary February March April May casewrite(strmat,' months.dat') type months.dat J anuary February March April May```
See Also	gname, caser ead, tbl write, tdfread

Purpose Computes a chosen cumulative distribution function (cdf).

Syntax $\quad P=\operatorname{cdf}\left({ }^{\prime}\right.$ name' , X, A1, A2, A3)

Description

Examples

bet acdf, bi nocdf, chi 2cdf, expcdf, fcdf, gamedf, geocdf, hygecdf, i cdf, I ogncdf, nhe, nbi ncdf, ncf cdf, nct cdf, ncx2cdf, nor nedf, pdf, poi sscdf, random rayl cdf, tcdf, uni dcdf, uni fcdf, wei bcdf

Purpose	Plot of empirical cumulative distribution function.
Syntax	```cdf pl ot (X) h = cdf pl ot(X) [h,stats] = cdf pl ot (X)```
Description	cdf pl ot (X) displays a plot of the empirical cumulative distribution function (cdf) for the data in the vector X. The empirical cdf $F(x)$ is defined as the proportion of X values less than or equal to x.
	This plot, like those produced by hi st and nor mpl ot, is useful for examining the distribution of a sample of data. You can overlay a theoretical cdf on the same pl ot to compare the empirical distribution of the sample to the theoretical distribution.
	The kst est, kstest 2 , and $\mathrm{i} i \mathrm{ll}$ i et est functions compute test statistics that are derived from the empirical cdf. Y ou may find the empirical cdf plot produced by cdf pl ot useful in hel ping you to understand the output from those functions.
	$\mathrm{H}=\mathrm{cdf} \mathrm{pl}$ ot (X$)$ returns a handle to the cdf curve.
	[h , stats] $=\operatorname{cdf} \mathrm{pl}$ ot (X) also returns a stats structure with the following fields.
	Field Contents
	stats.min Minimum value
	stats.max Maximum value
	stats.mean Sample mean
	stat s. redi an Sample median (50th percentile)
	stats.std Sample standard deviation
Examples	Generate a normal sample and an empirical cdf plot of the data.
	$\begin{aligned} & x=\operatorname{nor} m \mathrm{md}(0,1,50,1) ; \\ & \operatorname{cdf} \mathrm{pl} \text { ot }(x) \end{aligned}$

cdfplot

See Also hi st, kst est, kstest 2, lilli et est, nor mpl ot

Purpose

Syntax

Description

Examples

```
probability = chi 2cdf(5, 1:5)
probability =
```

0. 9747
1. 9179
2. 8282
3. 7127
4. 5841
probability = chi $2 \operatorname{cdf}(1: 5,1: 5)$
probability =
5. 6827
6. 6321
7. 6084
8. 5940
9. 5841

See Also cdf, chi 2 i nv, chi 2pdf, chi $2 r n d$, chi 2 st at

Purpose

Syntax
 $X=$ chi $2 \mathrm{i} \mathrm{nv}(\mathrm{P}, \mathrm{V})$

Description

Examples
where

Inverse of the chi-square (χ^{2}) cumulative distribution function (cdf).
$X=$ chi $2 \mathrm{i} \operatorname{nv}(\mathrm{P}, \mathrm{V})$ computes the inverse of the χ^{2} cdf with parameters specified by \vee for the corresponding probabilities in P. Vector or matrix inputs for P and V must have the same size. A scalar input is expanded to a constant matrix with the same dimensions as the other inputs.

The degrees of freedom parameters in V must be positive integers, and the values in P must lie in the interval [01].
The inverse χ^{2} cdf for a given probability p and v degrees of freedom is

$$
x=F^{-1}(p \mid v)=\{x: F(x \mid v)=p\}
$$

$$
p=F(x \mid v)=\int_{0}^{x} \frac{t^{(v-2) / 2} e^{-t / 2}}{2^{v / 2} \Gamma(v / 2)} d t
$$

and $\Gamma(\cdot)$ is the Gamma function. Each element of output X is the value whose cumulative probability under the χ^{2} cdf defined by the corresponding degrees of freedom parameter in V is specified by the corresponding value in P.

Find a value that exceeds 95% of the samples from a χ^{2} distribution with 10 degrees of freedom.

$$
\begin{aligned}
& x=\text { chi } 2 i \operatorname{nv}(0.95,10) \\
& x=
\end{aligned}
$$

18. 3070

You would observe values greater than 18.3 only 5% of the time by chance.
See Also chi 2 cdf , chi 2 pdf , chi 2 rnd , chi 2 st at , i cdf

Purpose

Syntax

Description

Examples

See Also

Chi-square (χ^{2}) probability density function (pdf).
$Y=\operatorname{chi} 2 \operatorname{pdf}(\mathrm{X}, \mathrm{V})$
$Y=$ chi $2 p d f(X, V)$ computes the χ^{2} pdf at each of the values in X using the corresponding parameters in V. Vector or matrix inputs for X and V must have the same size, which is also the size of output Y. A scalar input is expanded to a constant matrix with the same dimensions as the other input.

The degrees of freedom parameters in V must be positive integers, and the values in X must lie on the interval [0 1].
The χ^{2} pdf for a given value x and v degrees of freedom is

$$
y=f(x \mid v)=\frac{x^{(v-2) / 2} e^{-x / 2}}{2^{v / 2} \Gamma(v / 2)}
$$

where $\Gamma(\cdot)$ is the Gamma function. The result, y , is the probability that a single observation from a χ^{2} distribution with v degrees of freedom will have value x.

If x is standard normal, then x^{2} is distributed χ^{2} with one degree of freedom. If $x_{1}, x_{2}, \ldots, x_{n}$ are n independent standard normal observations, then the sum of the squares of the x^{\prime} s is distributed χ^{2} with n degrees of freedom (and is equivalent to the gamma density function with parameters $v / 2$ and 2).

```
nu \(=1: 6\);
\(x=n u ;\)
\(y=\) chi 2 pdf ( \(x, n u\) )
\(y=\)
```

0. 2420
1. 1839
2. 1542
3. 1353
4. 1220
5. 1120

The mean of the χ^{2} distribution is the value of the degrees of freedom parameter, nu. The above example shows that the probability density of the mean falls as nu increases.
chi 2 cdf , chi 2 i nv, chi 2 rnd, chi 2 st at, pdf

Purpose
Syntax

Description

Examples

See Also
chi 2 cdf , chi 2 i nv, chi 2 pdf, chi 2 st at

Purpose	Mean and variance for the chi-square (χ^{2}) distribution.									
Syntax	[M V] $=$ chi 2 stat (NU)									
Description	[$M \mathrm{~V}$] = chi 2 st at ($N U$) returns the mean and variance for the χ^{2} distribution with degrees of freedom parameters specified by NU.									
	The mean of the χ^{2} distribution is v, the degrees of freedom parameter, and the variance is $2 v$.									
Example	$\begin{aligned} & n u=1: 10 ; \\ & n u=n u ' * n u ; \\ & {[\mathrm{m} v]=\mathrm{chi} 2 \text { stat }(\mathrm{nu})} \end{aligned}$									
	$\mathrm{m}=$									
	1	2	3	4	5	6	7	8	9	10
	2	4	6	8	10	12	14	16	18	20
	3	6	9	12	15	18	21	24	27	30
	4	8	12	16	20	24	28	32	36	40
	5	10	15	20	25	30	35	40	45	50
	6	12	18	24	30	36	42	48	54	60
	7	14	21	28	35	42	49	56	63	70
	8	16	24	32	40	48	56	64	72	80
	9	18	27	36	45	54	63	72	81	90
	10	20	30	40	50	60	70	80	90	100
	$v=$									
	2	4	6	8	10	12	14	16	18	20
	4	8	12	16	20	24	28	32	36	40
	6	12	18	24	30	36	42	48	54	60
	8	16	24	32	40	48	56	64	72	80
	10	20	30	40	50	60	70	80	90	100
	12	24	36	48	60	72	84	96	108	120
	14	28	42	56	70	84	98	112	126	140
	16	32	48	64	80	96	112	128	144	160
	18	36	54	72	90	108	126	144	162	180
	20	40	60	80	100	120	140	160	180	200
See Also	chi 2 cdf , chi $2 i n v$, chi 2 pdf , chi 2 rnd									

classify

Purpose Linear discriminant analysis
Syntax cl ass = cl assify(sampl e, tr ai ni ng, group)
Description
Example
I oad di scrim
sample = ratings(idx,:);
trai ni ng = ratings(1:200,:);
g = group(1: 200) ;
cl ass $=$ cl assify (sample, trai ni ng, g) ;
first5 = cl ass(1:5)
first5 $=$
2
2
2
2
2
See Also mahal

Purpose Construct clusters from I i nkage output.

Syntax
 Description
 T = cl uster (Z, cut of f)
 $\mathrm{T}=\mathrm{cl}$ uster $(\mathrm{Z}$, cut of f , dept h, fl ag $)$
 $\mathrm{T}=\mathrm{cl}$ uster (Z, cut of f) constructs clusters from the hierarchical cluster tree, Z, generated by the I i nkage function. Z is a matrix of size ($m-1$)-by-3, where m is the number of observations in the original data.
 cut of f is a threshold value that determines how the cl uster function creates clusters. The value of cut of f determines how cl ust er interprets it.

Value	Meaning
$0<$ cut of $f<2$	cut of f is interpreted as the threshold for the inconsistency coefficient. The inconsistency coefficient quantifies the degree of difference between objects in the hierarchical cluster tree. If the inconsistency coefficient of a link is greater than the threshold, the cl ust er function uses the link as a boundary for a cluster grouping. For more information about the inconsistency coefficient, see the i nconsi st ent function.
cut of $f>=2$	cut of f is interpreted as the maximum number of clusters to retain in the hierarchical tree.

T = cl uster (Z , cut of f , dept $\mathrm{h}, \mathrm{fI} \mathrm{ag}$) constructs clusters from cluster tree Z . The dept h argument specifies the number of levels in the hierarchical cluster tree to include in the inconsistency coefficient computation. (The inconsistency coefficient compares a link between two objects in the cluster tree with neighboring links up to a specified depth. See the i nconsi stent function for more information.) When the dept h argument is specified, cut of f is always interpreted as the inconsistency coefficient threshold.

The f ag argument overrides the default meaning of the cut of f argument. If $f l$ ag is ' i nconsi stent' , then cut of f is interpreted as a threshold for the inconsistency coefficient. If fl ag is ' cl usters', then cut of f is the maximum number of clusters.

The output, T , is a vector of size m that identifies, by number, the cluster in which each object was grouped. To find out which objects from the original dataset are contained in cluster i, use find($\mathrm{T}=\mathrm{i}$).

The example uses the pdi st function to calculate the distance between items in a matrix of random numbers and then uses the I i nkage function to compute the hierarchical cluster tree based on the matrix. The output of the I i nkage function is passed to the cl ust er function. The cut of f value 3 indicates that you want to group the items into three clusters. The example uses the find function to list all the items grouped into cluster 2.
rand('seed', 0);
$X=[r \operatorname{and}(10,3) ; \quad r a n d(10,3)+1 ; r$ and $(10,3)+2] ;$
$Y=\operatorname{pdi} \mathrm{st}(X)$;
Z = Ii nkage (Y);
T = cl ust er ($Z, 3$) ;
find($\mathrm{T}=3$)
ans $=$
11
12
13
14
15
16
17
18
19
20
See Also $\begin{aligned} & \text { cl ust er dat a, cophenet, dendrogram i nconsi st ent , li nkage, pdi st, } \\ & \text { squar ef or } m\end{aligned}$

Purpose Construct clusters from data.

Syntax $\quad T=c l u s t e r d a t a(X$, cut of $f)$

Description $\quad T=c l$ ust er dat $a(X$, cut of f) constructs clusters from the data matrix X . X is a matrix of size m by n, interpreted as m observations of n variables.
cut of f is a threshold value that determines how the cl uster function creates clusters. The value of cut of f determines how cl ust er dat a interprets it.

Value	Meaning
$0<$ cut of $f<1$	cut of f is interpreted as the threshold for the inconsistency coefficient. The inconsistency coefficient quantifies the degree of difference between objects in the hierarchical cluster tree. If the inconsistency coefficient of a link is greater than the threshold, the cl ust er function uses the link as a boundary for a cluster grouping. For more information about the inconsistency coefficient, see the i nconsi st ent function.
cut of $f>=1$	cut of f is interpreted as the maximum number of clusters to retain in the hierarchical tree.

The output, T , is a vector of size m that identifies, by number, the cluster in which each object was grouped.
$T=c l$ ust er dat a(X, cut of f) is the same as
Y = pdi st (X, ' eucl i d');
$Z=1 i n k a g e(Y, '$ single');
$\mathrm{T}=\mathrm{cl}$ uster (Z , cut of f);
Follow this sequence to use nondefault parameters for pdi st and I i nkage.

Example

The example first creates a sample dataset of random numbers. The example then uses the cl ust er dat a function to compute the distances between items in the dataset and create a hierarchical cluster tree from the dataset. Finally, the cl ust er dat a function groups the items in the dataset into three clusters. The example uses the find function to list all the items in cluster 2.

```
r and(' seed',12);
X = [rand(10,3); rand(10,3) +1. 2; rand( 10,3) +2. 5;
T = cl uster data( }X,3)
find(T=2)
ans =
21
22
23
24
25
26
2 7
28
29
30
```

Purpose	Enumeration of all combinations of n objects k at a time.
Syntax	$\mathrm{C}=\mathrm{contonk}(\mathrm{v}, \mathrm{k})$
Description	$\mathrm{C}=\operatorname{contbnk}(\mathrm{v}, \mathrm{k})$ returns all combinations of the n elements in v taken k at a time.
	$C=$ conbnk (v, k) produces a matrix C with k columns and $n!/ k!(n-k)!$ rows, where each row contains k of the elements in the vector v.
	It is not practical to use this function if v has more than about 15 elements.
Example	Combinations of characters from a string.
	$\begin{aligned} & \mathrm{C}=\text { combnk(' t endri } \mathrm{I} \text { ' }, 4) \text {; } \\ & \text { l ast } 5=\mathrm{C}(31: 35,:) \end{aligned}$
	\| ast5 =
	t edr tenl teni t enr t end
	Combinations of elements from a numeric vector. $c=\operatorname{contbnk}(1: 4,2)$
	c =
	$3 \quad 4$
	24
	23
	14
	13
	12

Purpose Cophenetic correlation coefficient.

Syntax $\quad c=\operatorname{cophenet}(Z, Y)$

Description

$c=$ cophenet (Z, Y) computes the cophenetic correlation coefficient which compares the distance information in Z, generated by 1 i nkage, and the distance information in Y, generated by pdi st. Z is a matrix of size ($m-1$)-by-3, with distance information in the third column. Y is a vector of size $m \cdot(m-1) / 2$.

For example, given a group of objects $\{1,2, \ldots, m\}$ with distances Y, the function I i nkage produces a hierarchical cluster tree. The cophenet function measures the distortion of this classification, indicating how readily the data fits into the structure suggested by the classification.
The output value, c, is the cophenetic correlation coefficient. The magnitude of this value should be very close to 1 for a high-quality solution. This measure can be used to compare alternative cluster solutions obtained using different algorithms.
The cophenetic correlation between $Z(:, 3)$ and Y is defined as

$$
c=\frac{\Sigma_{i<j}\left(Y_{i j}-y\right)\left(Z_{i j}-z\right)}{\sqrt{\Sigma_{i<j}\left(Y_{i j}-y\right)^{2} \Sigma_{i<j}\left(Z_{i j}-z\right)^{2}}}
$$

where:

- $Y_{i j}$ is the distance between objects i and j in Y.
- $Z_{i j}$ is the distance between objects i and j in $Z(:, 3)$.
- y and z are the average of Y and $Z(:, 3)$, respectively.

Example

```
rand('seed',12);
X = [r and( 10, 3); rand( 10, 3) +1; r rand( 10, 3) +2];
Y = pdi st(X);
Z = li nkage(Y,' centroid');
c = cophenet(Z,Y)
c =
        0. }698
```

See Also

cl uster, dendrogram i nconsi stent, li nkage, pdi st, squar ef orm

```
Purpose D-optimal design of experiments - coordinate exchange algorithm.
Syntax settings = cordexch(nf actors, nruns)
[ settings,X] = cordexch(nf actors, nruns)
[ settings, X] = cordexch(nf actors, nruns,' model')
Description settings = cordexch(nf actors, nruns) generates thefactor settings matrix,
set ti ngs, for a D-optimal design using a linear additive model with a constant
term. settings has nr uns rows and nf act or s columns.
[ settings, X] = cordexch(nf act ors, nruns) also generates the associated
design matrix X.
[ settings, X] = cor dexch( nf act ors, nruns, ' model ' ) produces a design for fitting a specified regression model. The input, ' nodel ' , can be one of these strings:
- ' i nt er acti on' - includes constant, linear, and cross-product terms.
- ' quadr at ic' - includes interactions and squared terms.
- ' pur equadr at i c' - includes constant, linear and squared terms.
Example TheD-optimal design for two factors in ninerun using a quadratic model is the \(3^{2}\) factorial as shown below:
```

```
settings = cordexch(2,9,' quadratic')
```

settings = cordexch(2,9,' quadratic')
settings =
settings =
-1 1
-1 1
1
1
0 1
0 1
1 -1
1 -1
-1 -1
-1 -1
0 -1
0 -1
1 0
1 0
0
0
-1 0
-1 0
See Also rowexch, daugment, dcovary, hadanmrd, fullfact,ff2n

```

\section*{Purpose Correlation coefficients.}

\section*{Syntax \\ \(R=\operatorname{corrcoef}(X)\)}

Description \(\quad R=\operatorname{corrcoef}(X)\) returns a matrix of correlation coefficients calculated from an input matrix whose rows are observations and whose columns are variables. Element \(\mathrm{i}, \mathrm{j}\) of the matrix R is related to the corresponding element of the covariance matrix \(\mathrm{C}=\operatorname{cov}(\mathrm{X})\) by
\[
R(i, j)=\frac{C(i, j))}{\sqrt{C(i, i) C(j, j)}}
\]

The cor r coef function is part of the standard MATLAB Ianguage.
See Also cov, mean, st d, var

\section*{Purpose Covariance matrix.}

\section*{Syntax \\ \(C=\operatorname{cov}(X)\) \\ \(C=\operatorname{cov}(x, y)\)}

Description

Algorithm
The algorithm for cov is
\[
\begin{aligned}
& {[\mathrm{n}, \mathrm{p}]=\operatorname{size}(X) ;} \\
& X=X-\operatorname{ones}(\mathrm{n}, 1) * \operatorname{mean}(X) ; \\
& Y=X^{\prime} * X /(n-1) ;
\end{aligned}
\]
\begin{tabular}{|c|c|}
\hline Purpose & Cross-tabulation of several vectors. \\
\hline Syntax & ```
tabl e = crosstab(col 1, col 2)
table = crosstab(col 1, col 2, col 3, ...)
[tabl e,chi 2, p] = crosstab(col 1, col 2)
[table,chi 2, p,l abel ] = crosstab(col 1, col 2)
``` \\
\hline \multirow[t]{4}{*}{Description} & table \(=\) crosst ab(col 1, col 2) takes two vectors of positive integers and returns a matrix, \(t\) abl e, of cross-tabulations. The ijth element of \(t\) abl e contains the count of all instances where col \(1=i\) and col \(2=j\). \\
\hline & \begin{tabular}{l}
Alternatively, col 1 and col 2 can be vectors containing noninteger values, character arrays, or cell arrays of strings. crosst ab implicitly assigns a positive integer group number to each distinct value in col 1 and col 2, and creates a cross-tabulation using those numbers. \\
table \(=\) crosstab(col 1, col 2, col 3, ...) returnstable as an n-dimensional array, where \(n\) is the number of arguments you supply. The value of tabl e(\(i, j, k, \ldots)\) is the count of all instances where col \(1=i\), col \(2=j\), col \(3=k\), and so on.
\end{tabular} \\
\hline & [table, chi 2, p] = crosstab(col 1, col 2) alsoreturnsthechi-squarestatistic, chi 2 , for testing the independence of the rows and columns of \(t\) abl e. The scalar \(p\) is the significance level of the test. Values of \(p\) near zero cast doubt on the assumption of independence of the rows and columns of \(t\) abl \(e\). \\
\hline & [table, chi 2, p, I abel] = crosst ab(col 1, col 2) also returns a cell array I abel that has one column for each input argument. The value in I abel (\(\mathrm{i}, \mathrm{j}\)) is the value of col \(j\) that defines group \(i\) in the \(j\) th dimension. \\
\hline \multirow[t]{3}{*}{Example} & Example 1 \\
\hline & We generate 2 columns of 50 discrete uniform random numbers. The first column has numbers from 1 to 3 . The second has only the numbers 1 and 2 . The two columns are independent so we would be surprised if \(p\) were near zero. \\
\hline & ```
r1 = uni drnd(3,50,1);
r2 = uni drnd(2,50,1);
[tabl e, chi 2, p] = crosstab(r1,r2)
``` \\
\hline
\end{tabular}
```

table =
10 5
8
6 13
chi 2 =
4. }172
p =
0. }124

```

The result, 0.1242 , is not a surprise. A very small value of \(p\) would make us suspect the "randomness" of the random number generator.

\section*{Example 2}

We have data collected on several cars over a period of time. How many four-cylinder cars were made in the USA during the late part of this period?
[ \(\mathrm{t}, \mathrm{c}, \mathrm{p}, \mathrm{l}\) ] = crosstab(cyl 4, when, org) ;
```

|
| =
t(2,3,1)
ans =
38

```
            Other' 'Early' 'USA'
            ' Four' 'M d' 'Europe'
                [] 'Late' 'Japan'

\section*{See Also \(\quad t\) abul at \(e\)}
\begin{tabular}{|c|c|}
\hline Purpose & D-optimal augmentation of an experimental design. \\
\hline Syntax & ```
settings = daugment(startdes, nr uns)
[ settings, X] = daugment(startdes, nr uns,' model ')
``` \\
\hline Description & \begin{tabular}{l}
settings = daugment(startdes, nruns) augments an initial experimental design, st art des, with nr uns new tests. \\
[settings, X] = daugment (start des, nr uns, ' model ') also supplies the design matrix, X . The input, ' model ' , controls the order of the regression model. By default, daugment assumes a linear additive model. Alternatively, ' model ' can be any of these: \\
- ' i nt er acti on' - includes constant, linear, and cross product terms. \\
- ' quadr at ic' - includes interactions plus squared terms. \\
- ' pur equadr at i c' - includes constant, linear, and squared terms. \\
daugment uses the coordinate exchange algorithm.
\end{tabular} \\
\hline Example & We add 5 runs to a \(2^{2}\) factorial design to allow us to fit a quadratic model.
```

startdes = [-1 - 1; 1 - 1; -1 1; 1 1];
settings = daugment(startdes,5,' quadratic')

``` \\
\hline & -1 -1 \\
\hline & \(1-1\) \\
\hline & -1 1 \\
\hline & \(1 \quad 1\) \\
\hline & 10 \\
\hline & -1 0 \\
\hline & \(0 \quad 1\) \\
\hline & \(0 \quad 0\) \\
\hline & \(0-1\) \\
\hline
\end{tabular}

The result is a \(3^{2}\) factorial design.
See Also cor dexch, dcovary, rowexch
Purpose D-optimal design with specified fixed covariates.
\begin{tabular}{ll}
Syntax & \begin{tabular}{l}
settings \(=\) dcovary(fact ors, covari ates) \\
[settings, \(X]=\operatorname{dcovary(factors,~covari~at~es,~'~model~'~})\)
\end{tabular} \\
Description & \begin{tabular}{l}
set tings \(=\) dcovary(fact ors, covari at es, ' model ') creates a D-optimal \\
design subject to the constraint of fixed covari at es for each run.factors is \\
the number of experimental variables you want to control.
\end{tabular}
\end{tabular}
[settings, X] = dcovary(factors, covari at es, ' model ') also creates the associated design matrix, X . The input, ' model ' , controls the order of the regression model. By default, dcovary assumes a linear additive model.
Alternatively, ' nodel ' can be any of these:
- ' i nt er acti on' - includes constant, linear, and cross product terms.
- ' quadratic' - includes interactions plus squared terms.
- ' pur equadr at i c' - includes constant, linear, and squared terms.

Example Suppose we want to block an eight run experiment into 4 blocks of size 2 to fit a linear model on two factors.
```

covariates = dummyvar([[1 1 2 2 3 3 4 4]);
settings = dcovary(2, covariates(:,1:3),'linear')
settings =

```
\begin{tabular}{rrlll}
1 & 1 & 1 & 0 & 0 \\
-1 & -1 & 1 & 0 & 0 \\
-1 & 1 & 0 & 1 & 0 \\
1 & -1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 \\
-1 & -1 & 0 & 0 & 1 \\
-1 & 1 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 & 0
\end{tabular}

The first two columns of the output matrix contain the settings for the two factors. The last three columns are dummy variable codings for the four blocks.

See Also daugment, cor dexch
\begin{tabular}{|c|c|}
\hline Purpose & Plot dendrogram graphs. \\
\hline \multirow[t]{2}{*}{Syntax} & \(\mathrm{H}=\) dendr ogram Z) \\
\hline & \[
\begin{aligned}
& H=\text { dendrogram(} Z, p) \\
& [H, T]=\operatorname{dendr} \text { ogram(} \ldots)
\end{aligned}
\] \\
\hline \multirow[t]{5}{*}{Description} & \(H=\) dendrogram(Z) generates a dendrogram plot of the hierarchical, binary cluster tree, \(\mathrm{Z} . \mathrm{Z}\) is an (\(\mathrm{m}-1\))-by-3 matrix, generated by the I i nkage function, where \(m\) is the number of objects in the original dataset. \\
\hline & A dendrogram consists of many upside-down, U-shaped lines connecting objects in a hierarchical tree. Except for the Ward linkage (see I i nkage), the height of each \(U\) represents the distance between the two objects being connected. The output, H , is a vector of line handles. \\
\hline & \(H\) = dendr ogram(\(Z, p\)) generates a dendrogram with only the top \(p\) nodes. By default, dendr ogr amuses 30 as the value of \(p\). When there are more than 30 initial nodes, a dendrogram may look crowded. Todisplay every node, set \(p=0\). \\
\hline & [\(\mathrm{H}, \mathrm{T}\)] = dendrogr am(...) generates a dendrogram and returns T , a vector of size \(m\) that contains the cluster number for each object in the original dataset. T provides access to the nodes of a cluster hierarchy that are not displayed in the dendrogram because they fall bel ow the cutoff value \(p\). F or example, to find out which objects are contained in leaf node \(k\) of the dendrogram, use fi nd(\(\mathrm{T}=\mathrm{k}\)). Leaf nodes are the nodes at the bottom of the dendrogram that have no other nodes below them. \\
\hline & When there are fewer than p objects in the original data, all objects are displayed in the dendrogram. In this case, T is the identical map, i.e., \(T=(1: m)^{\prime}\), where each node contains only itself. \\
\hline \multirow[t]{5}{*}{Example} & rand(' seed', 12) ; \\
\hline & \(\mathrm{X}=\mathrm{rand}(100,2)\); \\
\hline & \(\mathrm{Y}=\) pdi st (\(\mathrm{X}, \mathrm{\prime}\) citi bl ock') ; \\
\hline & \(\mathrm{Z}=1 \mathrm{i}\) nkage(\(\mathrm{Y}, \mathrm{l}\) aver age') ; \\
\hline & [\(\mathrm{H}, \mathrm{T}]\) = dendrogrant Z) ; \\
\hline
\end{tabular}

find(T=20)
ans \(=\)
20
49
62
65
73
96
This output indicates that leaf node 20 in the dendrogram contains the original data points \(20,49,62,65,73\), and 96.

See Also cl uster, cl ust er dat a, cophenet, i nconsi st ent, I i nkage, pdi st, squar ef or m
Purpose Interactive graph of cdf (or pdf) for many probability distributions.
Syntax di sttool
Description
See Also randt ool

\section*{Purpose Matrix of 0-1 "dummy" variables.}

\section*{Syntax \(\quad D=\) dummyar (group)}

Description \(\quad D=\) dummyvar (group) generates a matrix, \(D\), of 0-1 columns. Dhas one column for each unique value in each column of the matrix gr oup. Each column of group contains positive integers that indicate the group membership of an individual row.

Example
Suppose we are studying the effects of two machines and three operators on a process. The first column of group would have the values 1 or 2 depending on which machine was used. The second column of gr oup would have the values 1,2 , or 3 depending on which operator ran the machine.
group = [1 1; 1 2; 1 3; 2 1; 2 2; 2 3];
\(\mathrm{D}=\) dummyar (group)
D =
\begin{tabular}{lllll}
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{tabular}

See Also pi nv, regress

\section*{Purpose Plot error bars along a curve.}

\section*{Syntax er rorbar (X, Y, L, U, symbol) \\ errorbar (\(\mathrm{X}, \mathrm{Y}, \mathrm{L}\)) \\ errorbar(Y,L)}

Description
er ror bar (\(X, Y, L, U\), symbol) plots \(X\) versus \(Y\) with error bars specified by \(L\) and \(U\). \(X, Y, L\), and \(U\) must be the same length. If \(X, Y, L\), and \(U\) are matrices, then each column produces a separateline. Theerror bars are each drawn a distance of \(U(i)\) above and \(L(i)\) below the points in (\(X, Y\)). symbol is a string that controls the line type, plotting symbol, and col or of the error bars.
er ror bar (\(\mathrm{X}, \mathrm{Y}, \mathrm{L}\)) plots X versus Y with symmetric error bars about Y .
er ror bar (Y, L) plots Y with error bars [\(\mathrm{Y}-\mathrm{L} \mathrm{Y}+\mathrm{L}]\).
The er r or bar function is a part of the standard MATLAB Ianguage.

\section*{Example}
```

I ambda = (0.1:0.2:0.5);
r = poi ssrnd(I anbda( ones(50,1),: ));
[p,pci] = poi ssfit(r, 0.001);
L = p - pci(1,:)
U = pci(2,:) - p
errorbar(1: 3, p, L, U, ' +' )
L =
0.1200 0.1600 0.2600
U =
0. }200
0. 2200
0. }340

```


\section*{ew maplot}
\begin{tabular}{|c|c|}
\hline Purpose & Exponentially Weighted Moving Average (EWMA) chart for Statistical Process Control (SPC). \\
\hline Syntax & ```
evmmpl ot (data)
evmapl ot (dat a, I ambda)
eumapl ot (dat a, I anbda, al pha)
ewmapl ot (dat a, I anbda, al pha, specs)
h = eummpl ot(...)
``` \\
\hline Description & \begin{tabular}{l}
ewmapl ot (data) produces an EWMA chart of the grouped responses in dat a. The rows of dat a contain replicate observations taken at a given time. Therows should be in time order. \\
eumapl ot (dat a, I anbda) produces an EWMA chart of thegrouped responses in dat a, and specifies how much the current prediction is influenced by past observations. Higher values of I andoda give more weight to past observations. By default, I anbda \(=0.4\); I anbda must be between 0 and 1 . \\
eumapl ot (dat a, I anbda, al pha) produces an EWMA chart of the grouped responses in dat a, and specifies the significance level of the upper and lower plotted confidence limits. al pha is 0.0027 by default. This value produces three-sigma limits: \\
norminv(1-0.0027/2) \\
ans \(=\) \\
3
\end{tabular} \\
\hline
\end{tabular}

To get k-sigma limits, use the expression 2* (1-nor madf (k) ). For example, the correct al pha value for 2 -sigma limits is 0.0455 , as shown below.
```

k = 2;
2*(1-normadf(k))
ans =
0.0455

```
eurrapl ot (dat a, I ambda, al pha, specs) produces an EWMA chart of the grouped responses in dat a, and specifies a two-element vector, specs, for the lower and upper specification limits of the response.
\(h=\) eumapl ot (...) returns a vector of handles to the plotted lines.

\section*{Example}

Reference

See Also xbarpl ot, schart

\section*{expcdf}

\section*{Purpose Exponential cumulative distribution function (cdf).}

\section*{Syntax \\ \(P=\operatorname{expcdf}(X, M)\)}

Description

Examples
The median of the exponential distribution is \(\mu * \log (2)\). Demonstrate this fact.
\[
\begin{aligned}
& \mathrm{mu}=10: 10: 60 ; \\
& \mathrm{p}=\operatorname{expcdf}(\log (2) * \mathrm{mu}, \mathrm{mu}) \\
& \mathrm{p}= \\
& 0.5000
\end{aligned}
\]
0. 5000
0. 5000
0. 5000
0. 5000

What is the probability that an exponential random variable will be less than or equal to the mean, \(\mu\) ?
```

$\mathrm{mu}=1$: 6;
$\mathrm{x}=\mathrm{m}$;
$p=\operatorname{expcdf}(x, m u)$
$\mathrm{p}=$
$\begin{array}{llllll}0.6321 & 0.6321 & 0.6321 & 0.6321 & 0.6321 & 0.6321\end{array}$

```

See Also cdf, expfit, expi nv, exppdf, exprnd, expstat

\section*{Purpose} Parameter estimates and confidence intervals for exponential data.

\author{
Syntax \\ Description
}

\section*{Example}
muhat \(=\) expfit(x)
[ muhat, muci] = expfit(x)
[muhat, muci] = expfit(x, al pha)
muhat \(=\) expfit(x) returns the estimate of the parameter, \(\mu\), of the exponential distribution given data \(x\).
[ muhat, muci] = expfit(x) also returns the 95\% confidence interval in muci .
[ muhat, muci ] = expfit(x, al pha) gives 100(1-al pha) \% confidence intervals. F or example, al pha \(=0.01\) yields \(99 \%\) confidence intervals.

We generate 100 independent samples of exponential data with \(\mu=3\). muhat is an estimate of \(t r u e \_m u\) and muci is a \(99 \%\) confidence interval around muhat. Notice that muci containstrue_mu.
```

true_mu = 3;
[muhat, muci] = expfit(r,0.01)

```
muhat \(=\)
        2. 8835
muci \(=\)
2. 1949
3. 6803

See Also expcdf, expi nv, exppdf, exprnd, expstat, bet afit, bi nofit, ganfit, nornfit, poi ssfit, unifit, wei bfit

\section*{expinv}

\section*{Purpose Inverse of the exponential cumulative distribution function (cdf).}

\section*{Syntax \(\quad X=\operatorname{expi} n v(P, M)\)}

Description

Examples

See Also
expcdf, expfit, exppdf, exprnd, expstat, i cdf

\section*{Purpose Exponential probability density function (pdf).}

\section*{Syntax \(\quad Y=\operatorname{exppdf}(X, M)\)}

\section*{Description exppdf ( \(\mathrm{X}, \mathrm{MJ}\) ) computes the exponential pdf at each of the values in X using the} corresponding parameters in MJ. Vector or matrix inputs for \(X\) and \(M J\) must be the same size. A scalar input is expanded to a constant matrix with the same dimensions as the other input. The parameters in MU must be positive.

The exponential pdf is
\[
y=f(x \mid \mu)=\frac{1}{\mu} e^{-\frac{x}{\mu}}
\]

The exponential pdf is the gamma pdf with its first parameter equal to 1.
The exponential distribution is appropriate for modeling waiting times when the probability of waiting an additional period of time is independent of how long you've already waited. For example, the probability that a light bulb will burn out in its next minute of use is relatively independent of how many minutes it has already burned.

\section*{Examples}
```

y = exppdf(5, 1:5)
y =
0.0067 0.0410
y = exppdf(1:5, 1:5)
y =
0. 3679
0. 1839
0. 1226
0. 0920
0. 0736

```

See Also expcdf, expfit, expinv, exprnd, expstat, pdf

\section*{exprnd}

\section*{Purpose Random numbers from the exponential distribution.}

\author{
Syntax \\ Description
}
\(R=\operatorname{expr} n d(M)\)
\(R=\operatorname{expr} n d(M, m)\)
\(R=\operatorname{expr} n d(M, m n)\)

\section*{Examples}
\(R\) = exprnd(MJ) generates exponential random numbers with mean MJ. The size of \(R\) is the size of \(M\).
\(R\) = exprnd( \(M \mathrm{~J}, \mathrm{~m}\) ) generates exponential random numbers with mean \(M\), where mis a 1-by-2 vector that contains the row and column dimensions of \(R\).
\(R=\operatorname{exprnd}(M, m n)\) generates exponential random numbers with mean \(M\), where scalars mand \(n\) are the row and column dimensions of \(R\).
```

 n1 = exprnd(5: 10)
 n1 =
 7.5943 18.3400 2.7113 3.0936 0.6078 9.5841
 n2 = exprnd(5: 10, [1 6])
 n2 =
 3.2752 1.1110 23.5530 23.4303 5.7190 3.9876
 n3 = exprnd(5, 2,3)
 n3 =
 24.3339 13.5271 1.8788
 4.}793
 4. }367
 2. }646
    ```

See Also expcdf, expfit, expinv, exppdf, expstat


See Also expcdf, expfit, expinv, exppdf, exprnd

Purpose F cumulative distribution function (cdf).

\section*{Syntax \\ \(P=f c d f(X, V 1, V 2)\)}

Description

Examples
This exampleillustrates an important and useful mathematical identity for the \(F\) distribution.
```

nu1 = 1: 5;
nu2 = 6: 10;
x = 2: 6;
F1 = fcdf(x, nu1, nu2)
F1 =

```
0. 7930
0. 8854
0. 9481
0. 9788
0. 9919
```

F2 = 1 - fcdf(1./x, nu2, nu1)
F2 =

```
0. 7930
0. 8854
0. 9481
0. 9788
0. 9919

See Also cdf, finv, f pdf, frnd, fstat
\begin{tabular}{|c|c|}
\hline Purpose & Two-level full-factorial designs. \\
\hline Syntax & \(X=f f 2 n(n)\) \\
\hline Description & \(X=\mathrm{ff} 2 \mathrm{n}(\mathrm{n})\) creates a two-level full-factorial design, X , where n is the desired number of columns of \(X\). The number of rows in \(X\) is \(2^{n}\). \\
\hline \multirow[t]{11}{*}{Example} & \(X=f f 2 n(3)\) \\
\hline & \(\mathrm{X}=\) \\
\hline & \(0 \quad 0 \quad 0\) \\
\hline & \(0 \quad 0 \quad 1\) \\
\hline & \(0 \quad 10\) \\
\hline & \(0 \quad 1 \begin{array}{lll}0 & 1\end{array}\) \\
\hline & 100 \\
\hline & 100 \\
\hline & \(1 \quad 10\) \\
\hline & \(1 \begin{array}{lll}1 & 1 & 1\end{array}\) \\
\hline & \(X\) is the binary representation of the numbers from 0 to \(2^{n}-1\). \\
\hline See Also & fracfact, fullfact \\
\hline
\end{tabular}

\section*{finv}

Purpose Inverse of the F cumulative distribution function (cdf).

\section*{Syntax \(\quad X=\operatorname{finv}(P, V 1, V 2)\)}

Description \(\quad X=\mathrm{finv}(P, V 1, V 2)\) computes the inverse of the \(F\) cdf with numerator degrees of freedom V1 and denominator degrees of freedom V2 for the corresponding probabilities in P . Vector or matrix inputs for \(\mathrm{P}, \mathrm{V} 1\), and V 2 must all be the same size. A scal ar input is expanded to a constant matrix with the samedimensions as the other inputs.

The parameters in V1 and V2 must all be positive integers, and the values in \(P\) must lie on the interval [01].

The \(F\) inverse function is defined in terms of the \(F\) cdf as
\[
x=F^{-1}\left(p \mid v_{1}, v_{2}\right)=\left\{x: F\left(x \mid v_{1}, v_{2}\right)=p\right\}
\]
where
\[
\mathrm{p}=\mathrm{F}\left(\mathrm{x} \mid \mathrm{v}_{1}, v_{2}\right)=\int_{0}^{x} \frac{\Gamma\left[\frac{\left(v_{1}+v_{2}\right)}{2}\right]}{\Gamma\left(\frac{v_{1}}{2}\right) \Gamma\left(\frac{v_{2}}{2}\right)}\left(\frac{v_{1}}{v_{2}}\right)^{\frac{v_{1}}{2}} \frac{\mathrm{t}^{\frac{v_{1}-2}{2}}}{\left[1+\left(\frac{v_{1}}{v_{2}} \mathrm{t}\right]^{\frac{v_{1}+v_{2}}{2}}\right.} d t
\]

Find a value that should exceed 95\% of the samples from an \(F\) distribution with 5 degrees of freedom in the numerator and 10 degrees of freedom in the denominator.
\[
\begin{aligned}
& x=\mathrm{finv}(0.95,5,10) \\
& x= \\
& 3.3258
\end{aligned}
\]

You would observe values greater than 3.3258 only \(5 \%\) of the time by chance.
See Also fcdf, \(\mathrm{f} p \mathrm{ff}, \mathrm{fr} \mathrm{nd}, \mathrm{f} s t\) at, i cdf

Purpose F probability density function (pdf).

\section*{Syntax \\ \(Y=f p d f(X, V 1, V 2)\)}

Description
\(Y=f p d f(X, V 1, V 2)\) computes the \(F\) pdf at each of the values in \(X\) using the corresponding parameters in V1 and V2. Vector or matrix inputs for \(\mathrm{X}, \mathrm{V} 1\), and V2 must all be the same size. A scalar input is expanded to a constant matrix with the same dimensions as the other inputs. The parameters in V1 and V 2 must all be positive integers, and the values in X must lie on the interval \([0 \infty)\).

The probability density function for the \(F\) distribution is
\[
y=f\left(x \mid v_{1}, v_{2}\right)=\frac{\Gamma\left[\frac{\left(v_{1}+v_{2}\right)}{2}\right]}{\Gamma\left(\frac{v_{1}}{2}\right) \Gamma\left(\frac{v_{2}}{2}\right)}\left(\frac{v_{1}}{v_{2}}\right)^{\frac{v_{1}}{2}} \frac{x^{\frac{v_{1}-2}{2}}}{\left[1+\left(\frac{v_{1}}{v_{2}}\right) x\right]^{\frac{v_{1}+v_{2}}{2}}}
\]

Examples \(\quad y=f p d f(1: 6,2,2)\)
\(y=\)
0. 2500
0. 1111
0. 0625
0. 0400
0. 0278
0. 0204
\(z=f p d f(3,5: 10,5: 10)\)
z =
0. 0689
0. 0659
0. 0620
0. 0577
0. 0532
0. 0487

See Also fcdf, finv, frnd, fstat, pdf

\section*{fracfact}

\section*{Purpose Generate fractional factorial design from generators.}
\begin{tabular}{ll} 
Syntax & \(x=f r a c f a c t('\) gen' \()\) \\
& {\([x\), conf \(]=f r a c f a c t('\) gen' \()\)}
\end{tabular}

Description \(\quad x=\mathrm{fracf}\) act (' gen' ) generates a fractional factorial design as specified by the generator string gen, and returns a matrix \(x\) of design points. The input string gen is a generator string consisting of "words" separated by spaces. E ach word describes how a column of the output design should be formed from columns of a full factorial. Typically gen will include single-letter words for the first few factors, plus additional multiple-letter words describing how the remaining factors are confounded with the first few.

The output matrix \(x\) is a fraction of a two-level full-factorial design. Suppose there are \(m\) words in gen, and that each word is formed from a subset of the first \(n\) letters of the al phabet. The output matrix \(x\) has \(2^{n}\) rows and \(m\) columns. Let \(F\) represent the two-level full-factorial design as produced by \(f f 2 n(n)\). The values in column \(j\) of \(x\) are computed by multiplying together the columns of \(F\) corresponding to letters that appear in the jth word of the generator string.
[ \(x\), conf ] = fracfact(' gen' ) also returns a cell array, conf, that describes the confounding pattern among the main effects and all two-factor interactions.

\section*{Examples}

\section*{Example 1}

We want to run an experiment to study the effects of four factors on a response, but we can only afford eight runs. (A run is a singlerepetition of the experiment at a specified combination of factor values.) Our goal is to determine which factors affect the response. There may be interactions between some pairs of factors.

A total of sixteen runs would be required to test all factor combinations. However, if we are willing to assume there are nothree-factor interactions, we can estimate the main factor effects in just eight runs.
[ \(x\), conf] = fracfact('a b c abc')


The first three columns of the \(x\) matrix form a full-factorial design. The final column is formed by multiplying the other three. The confounding pattern shows that the main effects for all four factors areestimable, but thetwo-factor interactions are not. For example, the X1*X2 and X3* \({ }^{*} 4\) interactions are confounded, so it is not possible to estimate their effects separately.

After conducting the experiment, we may find out that the ' ab' effect is significant. In order to determine whether this effect comes from X1*X2 or X3*X4 we would have to run the remaining eight runs. We can obtain those runs by reversing the sign of the final generator.
fracfact('a b c-abc')

\section*{fracfact}
ans \begin{tabular}{rrrr}
\(=\) & & & \\
-1 & -1 & -1 & 1 \\
-1 & -1 & 1 & -1 \\
-1 & 1 & -1 & -1 \\
-1 & 1 & 1 & 1 \\
1 & -1 & -1 & -1 \\
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1
\end{tabular}

\section*{Example 2}

Suppose now we need to study the effects of eight factors. A full factorial would require 256 runs. By clever choice of generators, we can find a sixteen-run design that can estimate those eight effects with no confounding from two-factor interactions.
```

[x,c] = fracfact('a b c d abc acd abd bcd');
c(1:10,:)
ans =
' Term ' Gener at or ' ' Conf oundi ng'
'X1' 'a' 'X1'
'X2' 'b' 'X2'
'X3' 'c' 'X3'
'X4' 'd' 'X4'
'X5' 'abc' 'X5'
' X6' 'acd' ' X6'
' X7' 'abd' 'X7'
' X8' 'bcd' 'X8'
'X1*X2' 'ab' 'X1*X2 + X3*X5 + X4*X7 + X6*X8'

```

This confounding pattern shows that the main effects are not confounded with two-factor interactions. The final row shown reveals that a group of four two-factor interactions is confounded. Other choices of generators would not have the same desirable property.
[ \(\mathrm{x}, \mathrm{c}\) ] = fracfact('a b c d ab cd ad bc');
c(1:10,:)
```

ans =
' Termm ' Gener at or' }\quad\mathrm{ ' Conf oundi ng'
' X2' ' b' 'X2 + X1*X5 + X3*X8'
' ' 'c' 'X3 + X2*X8 + X4*X6'
' ' 'd' ' X4 + X1*X7 + X3*X6'
' 'X5' 'ab' 'X5 + X1*X2'
' 'X6' 'cd' ' X6 + X3*X4'
' X7' 'ad' 'X7 + X1*X4'
' X8' 'bc' 'X8 + X2*X3'
' X1*X2' 'ab' 'X5 + X1*X2'

```

Here all the main effects are confounded with one or more two-factor interactions.

\author{
References
}

See Also ff \(2 n, f\) ul \(I f\) act , hadamar d

\section*{friedman}

Purpose

\section*{Syntax}

Description

Friedman's nonparametric two-way Analysis of Variance (ANOVA).
```

p = fri edman(X, reps)
p = fri edmmn(X, reps,' di spl ayopt')
[p,table] = friedman(...)
[p,table,stats] = friedman(...)

```
\(p=\mathrm{fri}\) edman ( \(X\), reps) performs the nonparametric Friedman's test to compare the means of the columns of \(X\). Friedman's test is similar to classical two-way ANOVA, but it tests only for column effects after adjusting for possible row effects. It does not test for row effects or interaction effects. Friedman's test is appropriate when columns represent treatments that are under study, and rows represent nuisance effects (blocks) that need to be taken into account but are not of any interest.
The different columns represent changes in factor A . The different rows represent changes in the blocking factor B. If there is more than one observation for each combination of factors, input \(r\) eps indicates the number of replicates in each "cell," which must be constant.
The matrix bel ow illustrates the format for a set-up where column factor \(A\) has three levels, row factor B has two levels, and there are two replicates ( \(r\) eps \(=2\) ). The subscripts indicate row, column, and replicate, respectively.
\[
\left[\begin{array}{lll}
x_{111} & x_{121} & x_{131} \\
x_{112} & x_{122} & x_{132} \\
x_{211} & x_{221} & x_{231} \\
x_{212} & x_{222} & x_{232}
\end{array}\right]
\]

Friedman's test assumes a model of the form
\[
x_{i j k}=\mu+\alpha_{i}+\beta_{j}+\varepsilon_{i j k}
\]
where \(\mu\) is an overall location parameter, \(\alpha_{\mathrm{i}}\) represents the column effect, \(\beta_{\mathrm{j}}\) represents the row effect, and \(\varepsilon_{i j k}\) represents the error. This test ranks the data within each level of \(B\), and tests for a difference across levels of \(A\). The \(p\) that fri edman returns is the \(p\)-value for the null hypothesis that \(\alpha_{i}=0\). If the \(p\)-value is near zero, this casts doubt on the null hypothesis. A sufficiently
small p-value suggests that at least one column-sample mean is significantly different than the other column-sample means; i.e., there is a main effect due to factor A. The choice of a limit for the p-value to determine whether a result is "statistically significant" is left to the researcher. It is common to declare a result significant if the p -value is less than 0.05 or 0.01 .
fri edman also displays a figure showing an ANOVA table, which divides the variability of the ranks into two or three parts:
- The variability due to the differences among the column means
- The variability due to the interaction between rows and columns (if reps is greater than its default value of 1)
- The remaining variability not explained by any systematic source

The ANOVA table has six columns:
- The first shows the source of the variability.
- The second shows the Sum of Squares (SS) due to each source.
- The third shows the degrees of freedom (df) associated with each source.
- The fourth shows the Mean Squares (MS), which is the ratio SS/df.
- The fifth shows Friedman's chi-square statistic.
- The sixth shows the p-value for the chi-square statistic.
\(p=\) friedman( \(X\), reps, ' di spl ayopt' \()\) enables the ANOVA table display when ' di spl ayopt ' is ' on' (default) and suppresses the display when 'di spl ayopt' is' off'.
[ \(\mathrm{p}, \mathrm{t}\) abl e] \(=\mathrm{fri}\) edman(... ) returns theANOVA table(including column and row labels) in cell array tabl e. (You can copy a text version of the ANOVA table to the clipboard by selecting Copy Text from the Edit menu.
[ \(\mathrm{p}, \mathrm{t}\) able, stats] = friedman(...) returns a st ats structure that you can use to perform a follow-up multiple comparison test. The fri ednmen test evaluates the hypothesis that the column effects are all the same against the alternative that they are not all the same. Sometimes it is preferable to perform a test to determine which pairs of column effects are significantly different, and which are not. Y ou can use the mul t compare function to perform such tests by supplying the st at structure as input.

\section*{friedman}

\section*{Examples}

Let's repeat the example from the anova2 function, this time applying Friedman's test. Recall that the data below come from a study of popcorn brands and popper type (Hogg 1987). The columns of the matrix popcorn are brands (Gourmet, National, and Generic). The rows are popper type (Oil and Air). Thestudy popped a batch of each brand threetimes with each popper. The values are the yield in cups of popped popcorn.
```

load popcorn
popcorn
popcorn =
5.5000 4.5000 3.5000
5.5000 4.5000 4.0000
6. }0000\mathrm{ 4. 0000
3. }000
6. }500
5. }000
4. }000
7.0000 5.5000 5.0000
7.0000 5.0000 4.5000
p = fri edmmn(popcorn, 3)
p =
0. }001

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{N Figure No. 2: Friedman's Test} & \multirow[t]{3}{*}{-} \\
\hline \multicolumn{6}{|l|}{File Edit View Insert Iools Window Help} & \\
\hline \multicolumn{6}{|c|}{Friedman's ANOVA Table} & \\
\hline Source & 55 & df & MS & Chi-sq & Prob>Chi-sq & \(\Delta\) \\
\hline \begin{tabular}{l}
Columns \\
Interaction
\end{tabular} & \[
\begin{gathered}
99.75 \\
0.0833
\end{gathered}
\] & 2 & \[
\begin{gathered}
49.875 \\
0.0417
\end{gathered}
\] & 13.76 & 0.001 & \\
\hline Error & 16.1667 & 12 & 1.3472 & & & \\
\hline Total & 116 & 17 & & & & \\
\hline
\end{tabular}

The small p-value of 0.001 indicates the popcorn brand affects the yield of popcorn. This is consistent with the results from anova2.
We could also test popper type by permuting the popcor \(n\) array as described on "Friedman's Test" on page 1-97 and repeating the test.
\begin{tabular}{ll} 
References & \begin{tabular}{l} 
Hogg, R. V. and J. Ledolter. Engineering Statistics. MacMillan Publishing \\
Company, 1987.
\end{tabular} \\
& \begin{tabular}{l} 
Hollander, M. and D. A. Wolfe. Nonparametric Statistical Methods. Wiley, \\
\\
1973.
\end{tabular} \\
See Also & anova2, mul t compare
\end{tabular}

\section*{frnd}

\section*{Purpose Random numbers from the \(F\) distribution.}
Syntax \(\quad\)\begin{tabular}{rl}
\(R\) & \(=f r n d(V 1, V 2)\) \\
\(R\) & \(=f r n d(V 1, V 2, m)\) \\
\(R\) & \(=f r n d(V 1, V 2, m, n)\)
\end{tabular}

Description

\section*{Examples}
```

n1 = frnd(1: 6, 1: 6)
n1 =
0.0022
n2 = frnd(2, 2,[2 3])
n2 =
0.3186 0.9727 3.0268
0.2052 148.5816 0.2191
n3 = frnd([1 2 3;4 5 6], 1, 2, 3)
n3 =
0.6233 0.2322 31.5458
2.5848 0.2121 4.4955

```
See Also fcdf, finv, f pdf,fstat

\section*{Purpose Mean and variance for the \(F\) distribution.}

\section*{Syntax \\ [ M V ] = fstat( \(\mathrm{V} 1, \mathrm{~V} 2\) )}

Description \(\quad[\mathrm{M} \mathrm{V}]=\mathrm{fstat}(\mathrm{V} 1, \mathrm{~V} 2)\) returns the mean and variance for the F distribution with parameters specified by V1 and V2. Vector or matrix inputs for V1 and V2 must have the same size, which is also the size of Mand V. A scalar input for V1 or V2 is expanded to a constant matrix with the same dimensions as the other input.

The mean of the \(F\) distribution for values of \(v_{2}\) greater than 2 is
\[
\frac{v_{2}}{v_{2}-2}
\]

The variance of the \(F\) distribution for values of \(v_{2}\) greater than 4 is
\[
\frac{2 v_{2}^{2}\left(v_{1}+v_{2}-2\right)}{v_{1}\left(v_{2}-2\right)^{2}\left(v_{2}-4\right)}
\]

The mean of the \(F\) distribution is undefined if \(v_{2}\) is less than 3 . The variance is undefined for \(v_{2}\) less than 5 .

\section*{Examples}
f st at returns NaN when the mean and variance are undefined.
```

[mv] = fstat(1:5, 1: 5)
m}
NaN NaN 3.0000 2.0000 1.6667
v =
NaN NaN NaN NaN 8.8889

```
See Also fcdf, finv, frnd, frnd

\section*{fsurfht}

Purpose Interactive contour plot of a function．
\begin{tabular}{|c|c|}
\hline Syntax & \[
\begin{aligned}
& \text { f surf ht (' fun' , xl i ms, yl ims) } \\
& \text { f surf ht (' fun' , xl ims, yl i ms, p1, p2, p3, p4, p5) }
\end{aligned}
\] \\
\hline \multirow[t]{3}{*}{Description} & f surf ht（＇ f un＇， \(\mathrm{xl} \mathrm{im} \mathrm{m}, \mathrm{ylins}\) ）is an interactive contour plot of the function specified by the text variablef un．The x－axis limits are specified by xlins in the form［xmin \(\mathrm{xm} ⿴ 囗 十 \mathrm{x}\) ］，and the y －axis limits are specified by yl ins in the form ［ymin ymax］． \\
\hline & f surfht（＇fun＇，xlins，ylims，p1，p2，p3，p4，p5）allows for five optional parameters that you can supply to the function \(f\) un． \\
\hline & The intersection of the vertical and horizontal reference lines on the plot defines the current \(x\)－value and \(y\)－value．Y ou can drag these referencelines and watch the calculated \(z\)－values（at the top of the plot）update simultaneously． Alternatively，you can type the \(x\)－value and \(y\)－value into editable text fields on the \(x\)－axis and \(y\)－axis． \\
\hline \multirow[t]{3}{*}{Example} & Plot the Gaussian likelihood function for the gas．nat data． I oad gas \\
\hline & Create a function containing the following commands，and name it gausl ike．m \\
\hline & ```
function z = gausli ke(mu, si gmm, p1)
n = l ength(pl);
z = ones(size(mu));
for i = 1: n
z = z .* (normpdf(pl(i ),mu, si gmm));
end
``` \\
\hline
\end{tabular}

The gausl i ke function calls nor mpdf，treating the data sample as fixed and the parameters \(\mu\) and \(\sigma\) as variables．Assume that the gas prices are normally distributed，and plot the likelihood surface of the sample．
```

f surf ht(' gausl i ke',[ 112 118],[ 3 5], pri ce1)

```


The sample mean is the \(x\)-value at the maximum, but the sample standard deviation is not the \(y\)-value at the maximum.
```

mumax = mean( pri ce1)
mumax =
115. }150
si gmamax = st d(pri ce1)*sqrt(19/ 20)
si g\mmax =

```
3. 7719

\section*{fullfact}
\begin{tabular}{|c|c|}
\hline Purpose & Full-factorial experimental design. \\
\hline Syntax & design \(=\mathrm{ful} \mathrm{l}\) fact (l evel s) \\
\hline \multirow[t]{2}{*}{Description} & design = fullfact(I evel s) give thefactor settings for a full factorial design. Each element in the vector I evel s specifies the number of unique values in the corresponding column of desi gn. \\
\hline & For example, if the first element of \(I\) evel \(s\) is 3 , then the first column of desi gn contains only integers from 1 to 3. \\
\hline \multirow[t]{11}{*}{Example} & If I evel s =[24\(]\), ful If act generates an eight-run design with two levels in the first column and four in the second column. \\
\hline & \\
\hline & \(d=\) \\
\hline & \(1 \quad 1\) \\
\hline & 21 \\
\hline & 12 \\
\hline & 22 \\
\hline & 13 \\
\hline & 23 \\
\hline & 14 \\
\hline & 24 \\
\hline See Also & ff 2 n , dcovary, daugment, cor dexch \\
\hline
\end{tabular}

\section*{Purpose Gamma cumulative distribution function (cdf).}

Syntax \(\quad P=\operatorname{ganadf}(X, A, B)\)
Description ganedf (\(X, A, B\)) computes the gamma cdf at each of the values in \(X\) using the corresponding parameters in A and B . Vector or matrix inputs for \(\mathrm{X}, \mathrm{A}\), and B must all be the same size. A scalar input is expanded to a constant matrix with the same dimensions as the other inputs. The parameters in \(A\) and \(B\) must be positive.

The gamma cdf is
\[
p=F(x \mid a, b)=\frac{1}{b^{a} \Gamma(a)} \int_{0}^{x} t^{a-1} e^{-\frac{t}{b}} d t
\]

The result, p , is the probability that a single observation from a gamma distribution with parameters \(a\) and \(b\) will fall in the interval \([0 \mathrm{x}]\).
gammai nc is the gamma distribution with b fixed at 1.

Examples

See Also cdf, ganfit, gaminv, gami i ke, gampdf, ganm nd, ganst at

Purpose
Parameter estimates and confidence intervals for gamma distributed data.
Syntax
Description

Example

Reference

See Also
phat \(=\) ganfit \((x)\)
[phat, pci] = ganfit(x)
[phat, pci] = ganfit(\(x\), al pha)
phat \(=\) ganfit(x) returns the maximum likelihood estimates (MLEs) for the parameters of the gamma distribution given the data in vector \(x\).
[phat, pci] = ganfit(x) returns MLEs and 95\% percent confidence intervals. The first row of pci is the lower bound of the confidence intervals; the last row is the upper bound.
[phat, pci] = ganfit(x, al pha) returns 100(1- al pha) \% confidence intervals. For example, al pha \(=0.01\) yields \(99 \%\) confidence intervals.

Note that the 95\% confidence intervals in the example below bracket the true parameter values of 2 and 4.
```

a = 2; b = 4;
r = gammd(a,b,100,1);
[p,ci] = ganfit(r)
p =
2. }1990\mathrm{ 3. }742
ci =
1.6840 2. }829
2. }7141 4.655

```

Hahn, G. J . and S.S. Shapiro. Statistical Models in Engineering. J ohn Wiley \& Sons, New York. 1994. p. 88.
gancdf, gaminv, ganh i ke, gampdf, gamnd, ganst at, bet af it, bi nof it, expfit, nornfit, poi ssfit, unifit, wei bfit

\section*{2-116}

\section*{Purpose Inverse of the gamma cumulative distribution function (cdf).}

\section*{Syntax \\ \(X=\operatorname{gaminv}(P, A, B)\)}

Description

Algorithm

Examples

There is no known analytical solution to the integral equation above. gaminv uses an iterative approach (Newton's method) to converge on the solution.

This example shows the relationship between the gamma cdf and its inverse function.
```

a = 1: 5;
b = 6: 10;
x = gami nv(gancdf ( 1:5, a, b) , a, b)
x =

```
1. 0000
2. 0000
3. 0000
4. 0000
5. 0000

See Also
gamedf, ganf it, gami i ke, gampdf, gamrnd, ganst at, i cdf

\section*{gamlike}

Purpose

\section*{Syntax}

Description

\section*{Example}

This example continues the example for ganf it.
```

a = 2; b = 3;
r = gammd(a,b, 100, 1);
[logL,i nf o] = gamlike([2. 1990 2. 8069],r)
|ogL =
267. }558
info =
0.0690-0.0790
-0.0790 0.1220

```
 See Also bet al i ke, gancdf, ganfit, gaminv, gampdf, gamnd, ganst at, mle, wei bl ike

\section*{gampdf}

Purpose Gamma probability density function (pdf).

\section*{Syntax \(\quad Y=\operatorname{gampdf}(X, A, B)\)}

Description gampdf (\(X, A, B\)) computes the gamma pdf at each of the values in \(X\) using the corresponding parameters in \(A\) and \(B\). Vector or matrix inputs for \(X, A\), and \(B\) must all be the same size. A scalar input is expanded to a constant matrix with the same dimensions as the other inputs. The parameters in \(A\) and \(B\) must all be positive, and the values in X must lie on the interval \([0 \infty\)).

The gamma pdf is
\[
y=f(x \mid a, b)=\frac{1}{b^{a} \Gamma(a)} x^{a-1} e^{-\frac{x}{b}}
\]

The gamma probability density function is useful in reliability models of lifetimes. The gamma distribution is more flexible than the exponential distribution in that the probability of a product surviving an additional period may depend on its current age. The exponential and \(\chi^{2}\) functions are special cases of the gamma function.

\section*{Examples}

The exponential distribution is a special case of the gamma distribution.
```

mu = 1: 5;
y = gampdf (1, 1,mu)
y =
0. }367
0. }303
0. 2388
0. }194
0. }163
y1 = exppdf (1, mu)
y1 =

```
0. 3679
0. 3033
0. 2388
0. 1947
0. 1637

See Also gamadf, ganfit, gaminv, gami ke, gamnd, ganst at, pdf

\section*{gamrnd}

\section*{Purpose Random numbers from the gamma distribution.}
Syntax \(\quad\)\begin{tabular}{rl}
\(R\) & \(=\operatorname{gam} \operatorname{nd}(A, B)\) \\
\(R\) & \(=\operatorname{gammd}(A, B, m)\) \\
\(R\) & \(=\operatorname{gam} \operatorname{nd}(A, B, m, n)\)
\end{tabular}

\section*{Description}

\section*{Examples}
```

    n1 = gamm nd( 1: 5, 6: 10)
    n1 =
        9.1132 12.8431 24.8025 38.5960 106.4164
    n2 = gammd( 5, 10,[1 5])
    n2 =
        30.9486 33.5667 33.6837 55.2014 46.8265
    n3 = gammd( 2: 6, 3, 1, 5)
    n3 =
        12. }8715\quad11.306
                                3. }098
                                15. }601
        21. }673
    ```
See Also gamcdf, ganf it, gamin nv, gamh i ke, gampdf, ganst at
\begin{tabular}{|c|c|}
\hline Purpose & Mean and variance for the gamma distribution. \\
\hline Syntax & [\(\mathrm{M}, \mathrm{V}\)] \(=\) ganstat \((\mathrm{A}, \mathrm{B})\) \\
\hline \multirow[t]{2}{*}{Description} & [M V] = ganst at \((\mathrm{A}, \mathrm{B})\) returns the mean and variance for the gamma distribution with parameters specified by \(A\) and \(B\). Vector or matrix inputs for \(A\) and \(B\) must have the same size, which is al so the size of Mand V. A scalar input for A or B is expanded to a constant matrix with the same dimensions as the other input. \\
\hline & The mean of the gamma distribution with parameters \(a\) and \(b\) is \(a b\). The variance is \(\mathrm{ab}^{2}\). \\
\hline \multirow[t]{7}{*}{Examples} & [m v] = gamstat (\(1: 5,1: 5\)) \\
\hline & \[
\mathrm{m}=
\] \\
\hline & \[
v=\begin{array}{lllll}
& & & \\
1 & 8 & 27 & 64 & 125
\end{array}
\] \\
\hline & [m v] = ganst at (\(1: 5,1 . /(1: 5)\)) \\
\hline & \[
\begin{array}{ccccc}
\\
\mathrm{m}=\begin{array}{llll}
& & & \\
1 & 1 & 1 & 1
\end{array} & 1
\end{array}
\] \\
\hline & \(\mathrm{v}=\) \\
\hline & \(\begin{array}{llllll}1.0000 & 0.5000 & 0.3333 & 0.2500 & 0.2000\end{array}\) \\
\hline
\end{tabular}

\footnotetext{
See Also gancdf, ganfit, gaminv, gami ke, gampdf, gamrnd
}

\section*{geocdf}

\section*{Purpose Geometric cumulative distribution function (cdf).}

\section*{Syntax \(\quad Y=\operatorname{geocdf}(X, P)\)}

Description geocdf (\(X, P\)) computes the geometric cdf at each of the values in \(X\) using the corresponding probabilities in \(P\). Vector or matrix inputs for \(X\) and \(P\) must be the same size. A scalar input is expanded to a constant matrix with the same dimensions as the other input. The parameters in P must lie on the interval [01].

The geometric cdf is
\[
y=F(x \mid p)=\sum_{i=0}^{f \operatorname{loor}(x)} p q^{i}
\]
where \(q=1-p\).
The result, y , is the probability of observing up tox trials before success, when the probability of success in any given trial is \(p\).

Examples Suppose you toss a fair coin repeatedly. If the coin lands face up (heads), that is a success. What is the probability of observing three or fewer tails before getting a heads?
```

p = geocdf (3, 0. 5)
p =
0. }937

```

See Also cdf, geoi nv, geopdf, geor nd, geost at
Purpose Inverse of the geometric cumulative distribution function (cdf).

\section*{Syntax \\ \(\mathrm{X}=\operatorname{geoi} \operatorname{nv}(\mathrm{Y}, \mathrm{P})\)}

Description \(\quad X=\) geoi \(n v(Y, P)\) returns the smallest positive integer \(X\) such that the geometric cdf evaluated at \(X\) is equal to or exceeds \(Y\). \(Y\) ou can think of \(Y\) as the probability of observing \(X\) successes in a row in independent trials where \(P\) is the probability of success in each trial.

Vector or matrix inputs for \(P\) and \(Y\) must have the same size, which is also the size of \(X\). A scalar input for \(P\) and \(Y\) is expanded to a constant matrix with the same dimensions as the other input. The values in \(P\) and \(Y\) must lie on the interval [01].

Examples

See Also geocdf, geopdf, geor nd, geost at , i cdf

Purpose Geometric mean of a sample.

\section*{Syntax}

Description

Examples

See Also mean, medi an, har mean, tri mean

Purpose Geometric probability density function (pdf).

\section*{Syntax \\ \(Y=\operatorname{geopdf}(X, P)\)}

Description geocdf (\(X, P\)) computes the geometric pdf at each of the values in \(X\) using the corresponding probabilities in \(P\). Vector or matrix inputs for \(X\) and \(P\) must be the same size. A scalar input is expanded to a constant matrix with the same dimensions as the other input. The parameters in P must lie on the interval [0 1].

The geometric pdf is
\[
y=f(x \mid p)=p q^{x^{\prime}}{ }_{(0,1, K)}(x)
\]
where \(q=1-p\).

\section*{Examples}

Suppose you toss a fair coin repeatedly. If the coin lands face up (heads), that is a success. What is the probability of observing exactly three tails before getting a heads?
\[
\begin{aligned}
& p=\operatorname{geopdf}(3,0.5) \\
& p= \\
& 0.0625
\end{aligned}
\]

See Also geocdf, geoi nv, geor nd, geost at, pdf
Purpose Random numbers from the geometric distribution.
Syntax \(R=\) geornd(\(P\))

\[
R=\operatorname{geor} n d(P, m)
\]

\[
R=\operatorname{geor} n d(P, m n)
\]
Description
Examples

r1 = geornd(1./ 2. ^(1: 6))

\(r 1=\)

 \(\begin{array}{lllll}2 & 10 & 2 & 5 & 2\end{array}\) 60

r2 = geor nd(0.01, [1 5])

r2 =

 \(\begin{array}{lllll}65 & 18 & 334 & 291 & 63\end{array}\)

r3 = geor nd(\(0.5,1,6\))

r3 =

 \(\begin{array}{llllll}0 & 7 & 1 & 3 & 1 & 0\end{array}\)
See Also geocdf, geoi nv, geopdf, geost at

Purpose Mean and variance for the geometric distribution.

\section*{Syntax \\ [M V] = geostat(P)}

Description
[\(M \mathrm{~V}\)] = geost at (\(P\)) returns the mean and variance for the geometric distribution with parameters specified by \(P\).

The mean of the geometric distribution with parameter \(p\) is \(q / p\), where \(q=1-p\). The variance is \(q / p^{2}\).

\section*{Examples}
```

[mv] = geostat(1./(1: 6))
m}
llllll
v =
$\begin{array}{llllll}0 & 2.0000 & 6.0000 & 12.0000 & 20.0000 & 30.0000\end{array}$

```

See Also geocdf, geoi nv, geopdf, geor nd

\section*{gline}

\section*{Purpose Interactively draw a line in a figure.}
\begin{tabular}{ll}
Syntax & gline(fig) \\
& h \(=\) gline(fig\()\) \\
& gline
\end{tabular}

\section*{Description}
gli ne(fi g) allows you to draw a line segment in the figurefig by clicking the pointer at the two end-points. A rubber band line tracks the pointer movement.
\(\mathrm{h}=\mathrm{gline}(\mathrm{fi} \mathrm{g})\) returns the handle to the line in h .
gl i ne with no input arguments draws in the current figure.

\section*{See Also refline, gname}
Purpose Demo of generalized linear models.
Syntax gl moleno
Description gl meleno begins a slide show demonstration of generalized linear models. The slides indicate when generalized linear models are useful, how to fit generalized linear models using the gl mf it function, and how to make predictions using the gl mal function.
See Also gl mfit, gl mal
Purpose Generalized linear model fitting.
\begin{tabular}{|c|c|}
\hline Syntax & \\
\hline & \begin{tabular}{l}
b = gl mfit(X, Y,' di str','link','est di sp', of fset, puts,' const' \\
[b, dev, stats] = gl mit(...)
\end{tabular} \\
\hline
\end{tabular}

Description \(\quad b=g l \operatorname{mfit}\left(x, y,{ }^{\prime}\right.\) di st \(\left.r^{\prime}\right)\) fits the generalized linear model for response \(Y\), predictor variable matrix \(X\), and distribution ' di str'. The following distributions are available: ' bi nomi al ' , ' gamm' , ' i nverse gaussi an' , ' I ognormal ' , ' normal ' (the default), and ' poi sson'. In most cases Y is a vector of response measurements, but for the binomial distribution \(Y\) is a two-column array having the measured number of counts in the first column and the number of trials (the binomial \(N\) parameter) in the second column. \(X\) is a matrix having the same number of rows as \(Y\) and containing the values of the predictor variables for each observation. The output \(b\) is a vector of coefficient estimates. This syntax uses the canonical link (see below) to relate the distribution parameter to the predictors.
b = gl mfit(\(x, y\), 'distr','link','est di sp', of fset, puts,' const') provides additional control over the fit. The 'link' argument specifies the relationship between the distribution parameter (\(\mu\)) and the fitted linear combination of predictor variables (xb). In most cases ' \(1 \mathrm{i} \mathrm{nk}^{\prime}\) is one of the following:
\begin{tabular}{|c|c|c|}
\hline 'link' & Meaning & Default (Canonical) Link \\
\hline 'identity' & \(\mu=x b\) & ' nor mal ' \\
\hline ' I og' & \(\log (\mu)=x b\) & ' poi sson' \\
\hline ' I ogit' & \(\log (\mu /(1-\mu))=x b\) & ' bi nomi al ' \\
\hline ' probit' & norminv \((\mu)=x b\) & \\
\hline ' compl ogl og' & \(\log (-\log (1-\mu))=x b\) & \\
\hline ' I ogl ogl i nk' & \(\log (-\log (\mu))=x b\) & \\
\hline ' reci procal ' & \(1 / \mu=x b\) & ' gamma' \\
\hline p (a number) & \(\mu^{\mathrm{p}}=x \mathrm{~b}\) & ' i nverse gaussi an' (with \(\mathrm{p}=2\)) \\
\hline
\end{tabular}

Alternatively, you can write functions to define your own custom link. You specify the link argument as a three-element cell array containing functions that define the link function, its derivative, and its inverse. F or example, suppose you want to define a reciprocal square root link using inline functions. You could define the variable myl i nks to use as your 'link' argument by writing:
```

FL = inline('x. ^-. 5' )
FD = inl ine(' -. 5*x.^- 1.5' )
FI = inline('x.^-2')
mylinks = {FL FI FD}

```

Alternatively, you could define functions named FL, FD, and FI in their own M-files, and then specify nyl i nks in the form
```

mylinks = {@L @D @ு|

```

The ' est di sp' argument can be ' on' to estimate a dispersion parameter for the binomial or Poisson distribution, or ' of \(f\) ' (the default) to use the theoretical value of 1.0 for those distributions. The gl nfit function al ways estimates dispersion parameters for other distributions.

The of \(f\) set and puts parameters can be vectors of the same length as \(Y\), or can be omitted (or specified as an empty vector). The of \(f\) set vector is a special predictor variable whose coefficient is known to be 1.0. As an example, suppose that you are model ing the number of defects on various surfaces, and you want to construct a model in which the expected number of defects is proportional to the surface area. Y ou might use the number of defects as your response, al ong with the Poisson distribution, the log link function, and the log surface area as an offset.

The puts argument is a vector of prior weights. As an example, if the response value \(Y(i)\) is the average of \(f(i)\) measurements, you could use \(f\) as a vector of prior weights.

The ' const' argument can be ' on' (the default) to estimate a constant term, or ' of \(f\) ' to omit the constant term. If you want the constant term, use this argument rather than specifying a column of ones in the \(X\) matrix.
[b, dev, st ats] \(=\mathrm{gl} \operatorname{lfit}(\ldots)\) returns the additional outputs dev and stats. dev is the deviance at the solution vector. The deviance is a generalization of the residual sum of squares. It is possible to perform an analysis of deviance to
compare several models, each a subset of the other, and to test whether the model with moreterms is significantly better than the model with fewer terms.
stats is a structure with the following fields:
- stat s . df e = degrees of freedom for error
- stats.s =theoretical or estimated dispersion parameter
- stats.sfit =estimated dispersion parameter
- st at s . est di \(\mathrm{sp}=1\) if dispersion is estimated, 0 if fixed
- stat s. beta = vector of coefficient estimates (same as b)
- st at s. se = vector of standard errors of the coefficient estimates b
- stats. coef \(f\) cor \(r=\) correlation matrix for \(b\)
- stats.t \(=t\) statistics for \(b\)
- stats. \(\mathrm{p}=\mathrm{p}\)-values for b
- stat s. resid = vector of residuals
- stats. resi dp = vector of Pearson residuals
- stats. resi dd = vector of deviance residuals
- stat s. resi da \(=\) vector of Anscombe residuals

If you estimate a dispersion parameter for the binomial or Poisson distribution, then stats.s is set equal to stats. sfit. Also, the elements of stat s. se differ by the factor stat s . s from their theoretical values.

\section*{Example}

We have data on cars weighing between 2100 and 4300 pounds. For each car weight we have the total number of cars of that weight, and the number that can be considered to get "poor mileage" according to some test. F or example, 8 out of 21 cars weighing 3100 pounds get poor mileage according to a measurement of the miles they can travel on a gallon of gasoline.
```

w = ( 2100: 200:4300)';
poor =[11 2 0 3 8 8 14 17 19 15 17 21]';
total =[llllllllllllllll

```

We can compareseveral fits to these data. First, let's try fitting logit and probit models:
```

[bl,dl,sl] = gl nfit(w,[poor total],' bi nomial');
[bp,dp,sp] = gl mfit(w,[poor total ],' bi nomial',' probit');

```
```

dl
dl =
6. }484
dp
dp =
7. 5693

```

The deviance for the logit model is smaller than for the probit model. Although this is not a formal test, it leads us to prefer the logit model.

We can do a formal test comparing two logit models. We already fit one model using was a linear predictor. Let's fit another logit model using both linear and squared terms in w. If there is no true effect for the squared term, the difference in their deviances should be small compared with a chi-square distribution having one degree of freedom.
```

[b2, d2, s2] = gl nfit([w w. ^2],[ poor total ],' bi nomi al')
dl - d2
ans =
0.7027
chi 2cdf (dl - d2, 1)
ans =
0. }598

```

A difference of 0.7072 is not at all unusual for a chi-square distribution with one degree of freedom, so the quadratic model does not give a significantly better fit than the simpler linear model.

The following are the coefficient estimates, their standard errors, t-statistics, and \(p\)-values for the linear model:
```

[b sl.se sl.t sl.p]
ans =

```
- 13. 3801
1. 3940
-9. 5986
0. 0000
0. 0042
0. 0004
9. 4474
0. 0000

This shows that we cannot simplify the model any further. Both the intercept and slope coefficients are significantly different from 0 , as indicated by \(p\)-values that are 0.0000 to four decimal places.

See Also
References
gl mal, gl medem, nl inf it, regress, regst at s
Dobson, A. J. An Introduction to Generalized Linear Models. 1990, CRC Press.
MuCullagh, P. and J. A. Nelder. Generalized Linear Models. 2nd edition, 1990, Chapman and Hall.

\section*{Purpose}

\section*{Syntax}

\section*{Description}

\section*{Example}

Compute predictions for generalized linear model.
yfit = glmal (b, X,'link')
[yfit, dlo, dhi] = gl mal (b, X,'।ink', stats, clev)
[yfit, dlo, dhi] = gl mal(b, X,'link', stats, clev, N , offset,' const')
yfit = gl mal (b, X, ' I ink') computes the predicted distribution parameters for observations with predictor values \(X\) using the coefficient vector band link function ' link'. Typically, b is a vector of coefficient estimates computed by the gl nf it function. The value of ' 1 i \(n k\) ' must be the same as that used in gl mfit . The result yf it is the value of the inverse of the link function at the linear combination \(\mathrm{X} * \mathrm{~b}\).
[yfit, dl o, dhi] = gl mal (b, X, 'link', st at s, cl ev) returns confidence bounds for the predicted values when you supply the st at s structure returned from gl mfit, and optionally specify a confidence level as the cl ev argument. (The default confidence level is 0.95 for \(95 \%\) confidence.) The interval [yfit-dlo, yfit+dhi] is a confidence bound for the true parameter value at the specified \(X\) values.
[yhat, dl o, dhi] = gl mval (bet a, X, ' I i nk', st ats, cl ev, N, of fset,' const') specifies three additional arguments that may be needed if you used certain arguments to gl nf it. If you fit a binomial distribution using gl nfi t , specify N as the value of the binomial \(N\) parameter for the predictions. If you included an offset variable, specify of \(f\) set as the new value of this variable. Use the same ' const' value (' on' or ' of \(f\) ') that you used with gl mit.

Let's model the number of cars with poor gasol ine mileage using the binomial distribution. First we use the binomial distribution with the default logit link to model the probability of having poor mileage as a function of the weight and squared weight of the cars. Then we compute a vector unew of new car weights at which we want to make predictions. Next we compute the expected number of cars, out of a total of 30 cars of each weight, that would have poor mileage. Finally wegraph the predicted values and \(95 \%\) confidence bounds as a function of weight.
```

w =[2100 2300 2500 2700 2900 3100 3300 3500 3700 3900 4100 4300]';
poor =[ll 2 0 3 8 8 14 17 19 15 17 21]';
total =[48 42 31 34 31 21 23 23 21 16 17 21]';

```
[b2, d2, s2] = gl mfit([w w. ^2], [poor total],' bi nomial') unew = (3000: 100: 4000) ' ;
[yfit, dlo, dhi] = gl mal (b2, [wnew wnew. ^2],'। ogit', s2, 0. 95, 30) error bar(wnew, yfit, dlo, dhi) ;

See Also gl nfit, gl molemo

\section*{2-136}

\section*{Purpose}

\section*{Syntax \\ gname('cases')}
gname
h = gname('cases', line_handle)
Description

Example you are done, press the Enter or Escape key. there is more than one line object on the plot. pl ot matrix, and gpl ot matrix functions.

Label plotted points with their case names or case number.
gname(' cases') displays a figure window, displays cross-hairs, and waits for a mouse button or keyboard key to be pressed. Position the cross-hair with the mouse and click once near each point to label that point. Input ' cases' is a string matrix with each row the case name of a data point. You can also click and drag a selection rectangle to label all points within the rectangle. When
gname with no arguments labels each case with its case number.
h = gname(' cases', line_handl e) returns a vector of handles to the text objects on the plot. Use the scalar I i ne_handl e to identify the correct line if

You can use gname to label plots created by the pl ot, scatter, gscatter,

Let's use the city ratings data sets to find out which cities are the best and worst for education and the arts. We create a graph, call the gname function, and click on the points at the extreme left and at the top.
```

l oad citi es
educati on = rati ngs(:, 6) ;
arts = ratings(:, 7);
pl ot (educati on, arts,' +' )
gname(names)

```


\section*{See Also}
gpl ot matrix, gscat er, gt ext, pl ot, pl ot matrix, scat ter

\section*{gplotmatrix}
\begin{tabular}{|c|c|}
\hline Purpose & Plot matrix of scatter plots by group. \\
\hline Syntax & \begin{tabular}{l}
gpl ot matrix \(x, y, g)\) \\
gpl ot matri \(x(x, y, g, ' c l r '\) ', sym, si \(z)\) \\
gpl ot matrix(x,y,g, 'clr', 'sym, siz,' dol eg') \\
gpl ot matri \(x\left(x, y, g, c^{\prime} r^{\prime}\right.\), ' sym', si \(z, '\) dol eg', ' di spopt ') \\
gpl ot matrix(x,y, g, 'clr', 'sym, si z,' dol eg', ' di spopt ', ' xnam', ' ynam) \\
[h, ax, bi gax] = gpl ot natrix(...)
\end{tabular} \\
\hline \multirow[t]{2}{*}{Description} & \begin{tabular}{l}
gpl ot mat rix(\(x, y, g)\) creates a matrix of scatter plots. Each individual set of axes in the resulting figure contains a scatter plot of a column of \(x\) against a column of y . All plots are grouped by the grouping variable g . \\
\(x\) and \(y\) are matrices with the same number of rows. If \(x\) has \(p\) columns and \(y\) has q columns, the figure contains a p-by-q matrix of scatter plots. If you omit y or specify it as the empty matrix, [], gpl ot mat rix creates a square matrix of scatter plots of columns of \(x\) against each other. \\
\(g\) is a grouping variable that can be a vector, string array, or cell array of strings. \(g\) must have the same number of rows as \(x\) and \(y\). Points with the same value of \(g\) are placed in the samegroup, and appear on the graph with the same marker and color. Alternatively, g can be a cell array containing several grouping variables (such as \{G1 G2 G3\}); in that case, observations are in the same group if they have common values of all grouping variables. \\
gpl ot mat ri \(x(x, y, g\), 'cl r', ' sym, , si z) specifies the col or, marker type, and size for each group. cl \(r\) is a string array of col ors recognized by the pl ot function. The default is ' \(\mathrm{cl} r^{\prime}={ }^{\prime} \mathrm{bgr} \mathrm{cnyk}\) '. ' sym' is a string array of symbols recognized by the pl ot command, with the default value' . '. si \(z\) is a vector of sizes, with the default determined by the ' def aul tlinemarker si ze' property. If you do not specify enough values for all groups, gpl ot mat ri x cycles through the specified values as needed.
\end{tabular} \\
\hline & gil ot mat rix(x,y,g, clr', 'sym, si z, ' dol eg') controls whether a legend is displayed on the graph ('dol eg' \(=\) ' on' , the default) or not (' dol eg' \(=\) ' of \(f^{\prime}\)). \\
\hline
\end{tabular}

\section*{gplotmatrix}
gpl ot matrix(x,y, g, clr','sym, si z,' dol eg', ' di spopt') controls what appears along the diagonal of a plot matrix of \(x\) versus \(x\). Allowable values are ' none' toleavethe diagonals blank, ' hi st' (the default) to plot histograms, or ' vari abl e' to write the variable names.
gpl ot matri x(x,y, g, 'clr',' sym, si z, ' dol eg', ' di spopt ', ' xnam, ' ynam) specifies the names of the columns in thex and \(y\) arrays. These names are used tolabel the \(x\) - and \(y\)-axes. ' xnam and ' ynam must be character arrays with one row for each column of \(x\) and \(y\), respectivel \(y\).
[h , ax, bi gax] = gpl ot natrix(...) returns three arrays of handles. h is an array of handles to the lines on the graphs. ax is a matrix of handles to the axes of the individual plots. bi gax is a handle to big (invisible) axes framing the entire plot matrix. These are left as the current axes, so a subsequent title, xl abel, or yl abel command will produce labels that are centered with respect to the entire pl ot matrix.

Example Load the citi es data. The rati ngs array has ratings of the cities in nine categories (category names are in the array cat egor \(i\) es). gr oup is a code whose value is 2 for the largest cities. We can make scatter plots of the first three categories against the other four, grouped by the city size code.
```

l oad di scrim
gpl ot matrix(ratings(:, 1: 3), ratings(: , 4: 7), group)

```

The output figure (not shown) has an array of graphs with each city group represented by a different color. The graphs are a little easier to read if we specify colors and plotting symbols, label the axes with the rating categories, and move the legend off the graphs.
```

gpl ot matrix(rati ngs(:, 1: 3),ratings(:, 4: 7), group,...
' br','.o' , [ ],' on' ,' ', cat egori es( 1: 3, : ),...
categori es(4: 7,:))

```


See Also grpstats, gscat ter, pl ot matrix
\begin{tabular}{|c|c|}
\hline Purpose & Summary statistics by group. \\
\hline Syntax & ```
means = grpstats(X, group)
[means, sem count s, name] = gr pstats(X, group)
grpst at s(x, group, al pha)
``` \\
\hline Description & \begin{tabular}{l}
means \(=\) grpstats( \(X\), group) returns the means of each column of \(X\) by group, where \(X\) is a matrix of observations. gr oup is an array that defines the grouping such that two elements of \(X\) are in the same group if their corresponding group values are the same. The grouping variable gr oup can be a vector, string array, or cell array of strings. It can also be a cell array containing several grouping variables (such as \{G1 G2 G3\}); in that case observations are in the same group if they have common values of all grouping variables. \\
[ means, sem count s, name] = grpstats(x, group, al pha) supplies the standard error of the mean in sem the number of elements in each group in count \(s\), and the name of each group in name. nane is useful to identify and label the groups when the input gr oup values are not simple group numbers. \\
grpstats( \(x\), group, al pha) plots 100(1-al pha) \% confidence intervals around each mean.
\end{tabular} \\
\hline Example & We assign 100 observations to one of four groups. For each observation we measure five quantities with true means from 1 to 5 . grpst at s allows us to compute the means for each group.
```

group = uni drnd(4, 100, 1);
true_mean = 1: 5;
true_rean = true_mean(ones(100,1),:);
x = normmd(true_nean, 1);
means = grpstats(x, group)
means =

``` \\
\hline & \begin{tabular}{lllll}
0.7947 & 2.0908 & 2.8969 & 3.6749 & 4.6555 \\
0.9377 & 1.7600 & 3.0285 & 3.9484 & 4.8169 \\
1.0549 & 2.0255 & 2.8793 & 4.0799 & 5.3740 \\
0.7107 & 1.9264 & 2.8232 & 3.8815 & 4.9689
\end{tabular} \\
\hline See Also & t abul ate, crosstab \\
\hline
\end{tabular}

\section*{2-142}
\begin{tabular}{|c|c|}
\hline Purpose & Scatter plot by group. \\
\hline \multirow[t]{4}{*}{Syntax} & gscat ter ( \(\mathrm{x}, \mathrm{y}, \mathrm{g}\) ) \\
\hline & gscatter ( \(\mathrm{x}, \mathrm{y}, \mathrm{g}, \mathrm{cl} \mathrm{r} \mathrm{l}^{\prime}\), 'sym, siz) \\
\hline &  \\
\hline & gscatter ( \(x, y, g, ' c l r^{\prime}\), ' sym', si \(z, '\) dol eg' , ' xnam, , ynam ) \\
\hline
\end{tabular}

Description gscatter \((x, y, g)\) creates a scatter plot of \(x\) and \(y\), grouped by \(g\), where \(x\) and \(y\) are vectors with the same size and \(g\) can be a vector, string array, or cell array of strings. Points with the same value of \(g\) are placed in the same group, and appear on the graph with the same marker and color. Alternatively, g can be a cell array containing several grouping variables (such as \{G1 G2 G3\}); in that case, observations are in the same group if they have common values of all grouping variables.
gscatter ( \(\mathrm{x}, \mathrm{y}, \mathrm{g}, \mathrm{c}\) cl r', ' sym, si z) specifies the color, marker type, and size for each group. ' cl r' is a string array of colors recognized by thepl ot function. Thedefault is' cl r' =' bgrcmyk'. ' sym is a stringarray of symbols recognized by the pl ot command, with the default value'. ' . si \(z\) is a vector of sizes, with the default determined by the ' def aul tlinemarkersize' property. If you do not specify enough values for all groups, gscat t er cycles through the specified values as needed.
gscatter( \(\mathrm{x}, \mathrm{y}, \mathrm{g}, \mathrm{cl} \mathrm{r}^{\prime}\), ' sym, si z, ' dol eg' ) controls whether a legend is displayed on the graph (' dol eg' \(=\) ' on' , the default) or not (' dol eg' \(=\) ' of \(\mathrm{f}^{\prime}\) ).
gscatter ( \(x, y, g,{ }^{\prime}\) cl r', ' sym, si z, ' dol eg' ,' xnam , ' ynam ) specifies the name to use for the \(x\)-axis and \(y\)-axis labels. If the \(x\) and \(y\) inputs are simple variable names and xnamand ynamare omitted, gscat ter labels the axes with the variable names.
\(h=\) gscatter (...) returns an array of handles to the lines on the graph.

\section*{Example}

Load the ci ti es data and look at the relationship between the ratings for climate (first column) and housing (second column) grouped by city size. We'll also specify the colors and plotting symbols.

I oad di scrim
gscatter(ratings(: 1 ), ratings(: 2), group, ' br', ' xo' )


See Also gpl ot matrix, grpstats, scatter

Purpose Harmonic mean of a sample of data.

\section*{Syntax}
\(\mathrm{m}=\) har mmean \((\mathrm{X})\)
Description
\(m=\) har mean \((X)\) calculates the harmonic mean of a sample. For vectors, har mmean \((x)\) is the harmonic mean of the elements in \(x\). For matrices, har mean \((X)\) is a row vector containing the harmonic means of each column.

The harmonic mean is
\[
m=\frac{n}{\sum_{i=1}^{n} \frac{1}{x_{i}}}
\]

Examples The sample average is greater than or equal to the harmonic mean.
```

x = exprnd(1, 10,6);
harmoni c = harmmean(x)
harmoni c =

```
0. 3382
0. 3200
0. 3710
0. 0540
0. 4936
0. 0907
```

average $=$ mean (x)
average $=$

```
0. 9741
0. 5319
0. 8122
1. 3509
1. 1583
1. 0088

See Also mean, medi an, geomean, trimmean

\section*{Purpose Plot histograms.}

\section*{Syntax}

Description

\section*{Examples}
hi st (y)
hi st ( \(y, n b\) )
hi st ( \(y, x\) )
[ \(n, x]=\) hist \((y, \ldots)\) elaborate plot statement.
hi st (y) draws a 10-bin histogram for the data in vector \(y\). The bins areequally spaced between the minimum and maximum values in \(y\).
hi st( \(\mathrm{y}, \mathrm{nb}\) ) draws a histogram with nb bins.
hi st ( \(y, x\) ) draws a histogram using the bins in the vector \(x\).
\([n, x]=\) hi st \((y, \ldots)\) do not draw graphs, but return vectors \(n\) and \(x\) containing the frequency counts and the bin locations such that bar ( \(x, n\) ) plots the histogram. This is useful in situations where more control is needed over the appearance of a graph, for example, to combine a histogram into a more

The hi st function is a part of the standard MATLAB Ianguage.
Generate bell-curve histograms from Gaussian data.
```

x = - 2. 9: 0.1: 2. 9;
y = normmd(0,1,1000,1);
hi st (y, x)

```


Purpose Histogram with superimposed normal density.

\section*{Syntax}
hi stfit(data)
hi stfit(data, nbi ns)
h = histfit(data, nbins)
Description

Example
\(r=n o r m n d(10,1,100,1) ;\)
hi stfit(r)


See Also hi st, nornfiit

\section*{hougen}
Purpose Hougen-Watson model for reaction kinetics.

\section*{Syntax \(\quad\) yhat \(=\) hougen (bet \(a, x)\)}

Description \(\quad y\) hat \(=\) hougen (bet \(a, x)\) returns the predicted values of the reaction rate, yhat, as a function of the vector of parameters, bet a, and the matrix of data, \(X\). bet a must have 5 elements and X must have three columns.
hougen is a utility function for \(r\) sndem.
The model form is:
\[
\hat{y}=\frac{\beta_{1} x_{2}-x_{3} / \beta_{5}}{1+\beta_{2} x_{1}+\beta_{3} x_{2}+\beta_{4} x_{3}}
\]

Reference Bates, D., and D. Watts. Nonlinear Regression Analysis and Its Applications. Wiley 1988. p. 271-272.

\section*{See Also rsmdemo}

\section*{hygecdf}

Purpose Hypergeometric cumulative distribution function (cdf).

\section*{Syntax \\ P = hygecdf ( \(\mathrm{X}, \mathrm{M}\) K, N)}

\section*{Description \\ hygecdf ( \(X, M \mathrm{~K}, \mathrm{~N}\) ) computes the hypergeometric cdf at each of the values in X} using the corresponding parameters in \(M, K\), and \(N\). Vector or matrix inputs for X, M, K, and N must all have the same size. A scalar input is expanded to a constant matrix with the same dimensions as the other inputs.

The hypergeometric cdf is
\[
p=F(x \mid M, K, N)=\sum_{i=0}^{x} \frac{\binom{K}{i}\binom{M-K}{N-i}}{\binom{M}{N}}
\]

The result, p , is the probability of drawing up to x of a possible K items in N drawings without replacement from a group of \(M\) objects.

Examples Suppose you have a lot of 100 floppy disks and you know that 20 of them are defective. What is the probability of drawing zero to two defective floppies if you select 10 at random?
```

p = hygecdf (2, 100, 20, 10)
p =
0.6812

```

See Also cdf, hygei nv, hygepdf, hyger nd, hygest at

\section*{hygeinv}
Purpose Inverse of the hypergeometric cumulative distribution function (cdf).

\section*{Syntax \(\quad X=\operatorname{hygei} n v(P, M, N, N)\)}

Description hygei \(\operatorname{nv}(P, M, K, N)\) returns the smallest integer \(X\) such that the hypergeometric cdf evaluated at \(X\) equal s or exceeds \(P\). Y ou can think of \(P\) as the probability of observing \(X\) defective items in \(N\) drawings without replacement from a group of Mitems where \(K\) are defective.

\section*{Examples}

Suppose you are the Quality Assurance manager for a floppy disk manufacturer. The production line turns out floppy disks in batches of 1,000. You want to sample 50 disks from each batch to see if they have defects. Y ou want to accept \(99 \%\) of the batches if there are no more than 10 defective disks in the batch. What is the maximum number of defective disks should you allow in your sample of 50 ?
\(x=\) hygei \(n v(0.99,1000,10,50)\)
\(\mathrm{x}=\)
3

What is the median number of defective floppy disks in samples of 50 disks from batches with 10 defective disks?
\[
\begin{aligned}
& x=\text { hygei } n v(0.50,1000,10,50) \\
& x= \\
& 0
\end{aligned}
\]

See Also hygecdf, hygepdf, hyger nd, hygest at , i cdf

\section*{Purpose Hypergeometric probability density function (pdf).}

\section*{Syntax \(\quad Y=\operatorname{hygepdf}(X, M, N, N)\)}

Description \(\quad Y=\) hygecdf ( \(X, M\) K, N) computes the hypergeometric pdf at each of the values in X using the corresponding parameters in \(\mathrm{M}, \mathrm{K}\), and N . Vector or matrix inputs for X, M, K, and N must all have the same size. A scalar input is expanded to a constant matrix with the same dimensions as the other inputs.

The parameters in \(M, K\), and \(N\) must all be positive integers, with \(N \leq M\) The values in X must be less than or equal to all the parameter values.

The hypergeometric pdf is
\[
y=f(x \mid M, K, N)=\frac{\binom{K}{x}\binom{M-K}{N-x}}{\binom{M}{N}}
\]

The result, y , is the probability of drawing exactly x of a possible K items in n drawings without replacement from a group of \(M\) objects.

\section*{Examples}

Suppose you have a lot of 100 floppy disks and you know that 20 of them are defective. What is the probability of drawing 0 through 5 defective floppy disks if you select 10 at random?
```

p = hygepdf (0: 5, 100, 20,10)
p =

```
0. 0951
0. 2679
0. 3182
0. 2092
0. 0841
0. 0215

See Also hygecdf, hygei nv, hyger nd, hygest at, pdf

\section*{hygernd}
\begin{tabular}{|c|c|}
\hline Purpose & Random numbers from the hypergeometric distribution. \\
\hline \multirow[t]{3}{*}{Syntax} & \(R=\) hyger nd( \(M, K, N\) ) \\
\hline & \(\mathrm{R}=\) hyger \(\mathrm{nd}(\mathrm{M}, \mathrm{K}, \mathrm{N}, \mathrm{mm})\) \\
\hline & \(R=\) hyger nd( \(M, K, N, m m n)\) \\
\hline \multirow[t]{3}{*}{Description} & \(R=\) hyger nd( \(M K, N\) ) generates hypergeometric random numbers with parameters \(\mathrm{M}, \mathrm{K}\), and N . Vector or matrix inputs for M K, and N must have the same size, which is al so the size of \(R\). A scalar input for \(M, K\), or \(N\) is expanded to a constant matrix with the same dimensions as the other inputs. \\
\hline & \(R=\) hyger nd( \(M, K, N, m)\) generates hypergeometric random numbers with parameters \(\mathrm{M}, \mathrm{K}\), and N , where nmis a 1-by-2 vector that contains the row and column dimensions of \(R\). \\
\hline & \(R=\) hyger nd( \(M, K, N, n m n\) ) generates hypergeometric random numbers with parameters \(M, K\), and \(N\), where scalars mmand \(n n\) are the row and column dimensions of \(R\). \\
\hline \multirow[t]{3}{*}{Examples} & numbers = hyger nd( \(1000,40,50)\) \\
\hline & numbers \(=\) \\
\hline & 1 \\
\hline See Also & hygecdf, hygei nv, hygepdf, hygest at \\
\hline
\end{tabular}

\section*{hygestat}
\begin{tabular}{|c|c|}
\hline Purpose & Mean and variance for the hypergeometric distribution. \\
\hline Syntax & [ \(\mathrm{N}, \mathrm{V}\) ] = hygestat ( \(\mathrm{M}, \mathrm{K}, \mathrm{N}\) ) \\
\hline \multirow[t]{2}{*}{Description} & [ \(M N, V\) ] = hygestat ( \(M \mathrm{~K}, \mathrm{~N}\) ) returns the mean and variance for the hypergeometric distribution with parameters specified by M K, and N. Vector or matrix inputs for \(M, K\), and \(N\) must have the same size, which is also the size of \(M N\) and \(V\). A scal ar input for \(M, K\), or \(N\) is expanded to a constant matrix with the same dimensions as the other inputs. \\
\hline & The mean of the hypergeometric distribution with parameters \(M, K\), and \(N\) is \(N K / M\), and the variance is
\[
N \frac{K}{M} \frac{M-K}{M} \frac{M-N}{M-1}
\] \\
\hline \multirow[t]{9}{*}{Examples} & The hypergeometric distribution approaches the binomial distribution, where \(p=K / M\) as \(M\) goes to infinity. \\
\hline & [ m v ] = hygestat (10. ^ 1: 4) , 10. ^(0: 3), 9) \\
\hline & \(\mathrm{m}=\) \\
\hline & \(\begin{array}{lllll}0.9000 & 0.9000 & 0.9000 & 0.9000\end{array}\) \\
\hline & \[
v=\begin{array}{llll} 
\\
& & \\
0.0900 & 0.7445 & 0.8035 & 0.8094
\end{array}
\] \\
\hline & [ \(\mathrm{m}, \mathrm{v}\) ] \(=\) bi nostat ( \(9,0.1\) ) \\
\hline & \(\mathrm{m}=\) \\
\hline & 0. 9000 \\
\hline & \[
v=0.8100
\] \\
\hline
\end{tabular}

\footnotetext{
See Also hygecdf, hygei nv, hygepdf , hyger nd
}
Purpose Inverse of a specified cumulative distribution function (icdf).

\section*{Syntax \(\quad X=i \operatorname{cdf}\left({ }^{\prime}\right.\) name' , P, A1, A2, A3)}

Description

Examples

\section*{See Also}
bet ai nv, bi noi nv, cdf, chi \(2 i n v\), expi nv, fi nv, gami nv, geoi nv, hygei nv, I ogni nv, nbi ni nv, ncfi nv, nctinv, ncx2i nv, norminv, pdf, poi ssi nv, random rayl i nv, ti nv, uni di nv, uni finv, wei bi nv

\section*{Purpose Calculate the inconsistency coefficient of a cluster tree.}

\section*{Syntax \(\quad Y=\) inconsi stent \((Z)\) \\ \(Y=i n c o n s i\) stent ( \(Z, d)\)}

Description \(\quad Y=i n c o n s i\) st ent \((Z)\) computes the inconsistency coefficient for each link of the hierarchical cluster tree \(Z\), where \(Z\) is an ( \(m-1\) )-by- 3 matrix generated by the I i nkage function. The inconsistency coefficient characterizes each link in a cluster tree by comparing its length with the average length of other links at the same level of thehierarchy. The higher the value of this coefficient, the less similar the objects connected by the link.
 in the hierarchical cluster tree \(Z\) to depth \(d\), where \(d\) is an integer denoting the number of levels of the cluster tree that are included in the calculation. By default, \(\mathrm{d}=2\).

The output, Y , is an (m-1)-by-4 matrix formatted as follows.
\begin{tabular}{ll} 
Column & Description \\
\hline 1 & Mean of the lengths of all the links included in the cal culation. \\
\hline 2 & Standard deviation of all the links included in the cal culation. \\
\hline 3 & Number of links included in the calculation. \\
\hline 4 & Inconsistency coefficient.
\end{tabular}

For each link, \(k\), the inconsistency coefficient is calculated as:
\[
Y(k, 4)=(z(k, 3)-Y(k, 1)) / Y(k, 2)
\]

F or leaf nodes, nodes that have no further nodes under them, the inconsistency coefficient is set to 0 .

\section*{Example}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{rand('seed', 12) ;} \\
\hline \multicolumn{4}{|l|}{\(X=r a n d(10,2)\);} \\
\hline \multicolumn{4}{|l|}{\(Y=\) pdi st ( \(X\) ) ;} \\
\hline \multicolumn{4}{|l|}{\(\mathrm{Z}=1 \mathrm{i}\) nkage( \(\mathrm{Y}, \mathrm{l}\) centroid' ) ;} \\
\hline \multicolumn{4}{|l|}{W = i nconsi st ent ( \(Z, 3\) )} \\
\hline \multicolumn{4}{|l|}{\(\mathrm{W}=\)} \\
\hline 0.0423 & 0 & 1. 0000 & 0 \\
\hline 0. 1406 & 0 & 1. 0000 & 0 \\
\hline 0. 1163 & 0. 1047 & 2. 0000 & 0. 7071 \\
\hline 0. 2101 & 0 & 1. 0000 & 0 \\
\hline 0. 2054 & 0. 0886 & 3. 0000 & 0. 6792 \\
\hline 0. 1742 & 0. 1762 & 3. 0000 & 0. 6568 \\
\hline 0. 2336 & 0. 1317 & 4. 0000 & 0. 6408 \\
\hline 0. 3081 & 0. 2109 & 5. 0000 & 0. 7989 \\
\hline 0. 4610 & 0. 3728 & 4. 0000 & 0. 8004 \\
\hline
\end{tabular}

See Also
cl ust er, cophenet, cl ust er dat a, dendr ogram I i nkage, pdi st, squar ef orm

\section*{2-156}

Purpose Interquartile range (IQR) of a sample.

\section*{Syntax \\ \(\mathrm{y}=\mathrm{i} \mathrm{qr}(\mathrm{X})\)}

Description

Examples when the data is all from the normal distribution. distribution.)
\(y=i \operatorname{qr}(X)\) computes the difference between the 75th and the 25th percentiles of the sample in \(X\). The IQR is a robust estimate of the spread of the data, since changes in the upper and lower \(25 \%\) of the data do not affect it.

If there are outliers in the data, then the IQR is more representative than the standard deviation as an estimate of the spread of the body of the data. The IQR is less efficient than the standard deviation as an estimate of the spread

Multiply the IQR by 0.7413 to estimate \(\sigma\) (the second parameter of the normal

This M onte Carlo simulation shows the relative efficiency of the IQR to the sample standard deviation for normal data.
```

x = normnd(0, 1, 100, 100);
s = std(x);
s_I QR = 0.7413 * i qr(x);
efficiency = (norm(s - 1)./norm(s_I QR - 1)).^2
efficiency =
0. }329

```

See Also st d, mad, range

\section*{jbtest}

Purpose J arque-Bera test for goodness-of-fit to a normal distribution.
Syntax \(\quad\)\begin{tabular}{ll}
\(H\) & \(=j\) btest \((X)\) \\
\(H\) & \(=j\) btest \((X\), al pha \()\) \\
& {\([H, P, J\) BSTAT, \(C V]=j\) btest \((X\), al pha \()\)}
\end{tabular}

Description \(\quad H=j\) bt est \((X)\) performs the J arque-Bera test on the input data vector \(X\) and returns H , the result of thehypothesis test. The result is \(\mathrm{H}=1\) if we can reject the hypothesis that \(X\) has a normal distribution, or \(H=0\) if we cannot reject that hypothesis. We reject the hypothesis if the test is significant at the \(5 \%\) level.

TheJ arque-Bera test evaluates the hypothesis that \(X\) has a normal distribution with unspecified mean and variance, against the alternative that \(X\) does not have a normal distribution. The test is based on the sample skewness and kurtosis of \(X\). F or a true normal distribution, the sample skewness should be near 0 and the sample kurtosis should be near 3 . TheJ arque-Bera test determines whether the sample skewness and kurtosis are unusually different than their expected values, as measured by a chi-square statistic.

TheJ arque-Bera test is an asymptotic test, and should not be used with small samples. Y ou may want to usel illi i et est in place of \(j\) bt est for small samples.
\(H=j\) bt est ( \(X\), al pha) performs the J arque-Bera test at the 100*al pha\% level rather than the \(5 \%\) level, where al pha must be between 0 and 1 .
[ H, P, J BSTAT, CV] = j bt est ( X , al pha) returns three additional outputs. P is the \(p\)-value of the test, J BSTAT is the value of the test statistic, and CV is the critical value for determining whether to reject the null hypothesis.

Example We can use j bt est to determine if car weights follow a normal distribution.
```

load carsmml|
[h, p, j] = j bt est(Wei ght)

```
```

h =
1
p =
0. }02671
j =
7. 2448

```

With a p-value of \(2.67 \%\), we reject the hypothesis that the distribution is normal. With a log transformation, the distribution becomes closer to normal but is still significantly different at the \(5 \%\) level.
```

[h, p, j] = j bt est(l og(Wei ght))
h =
1
p =
0. 043474
j =
6. }271

```

Seelilli et est for a different test of the same hypothesis.
Reference Judge, G. G., R. C. Hill, W. E. Griffiths, H. Lutkepohl, and T.-C. Lee. Introduction to the Theory and Practice of Econometrics. New York, Wiley.

See Also hi st,kstest 2, lillietest

\section*{kruskalwallis}

\section*{Purpose}

Syntax

Description

Kruskal-Wallis nonparametric one-way Analysis of Variance (ANOVA).
```

p = kruskal wal lis(X)
p = kruskal wal lis(X, group)
p = kruskal wal lis(X, group,' di spl ayopt')
[p, tabl e] = kruskal wal lis(...)
[p, tabl e, st at s] = kruskal wal lis(...)

```
\(\mathrm{p}=\) kruskal wal I is \((X)\) performs a Kruskal-Wallis test for comparing the means of columns of the \(m\)-by-n matrix \(X\), where each column represents an independent sample containing m mutually independent observations. The Kruskal-Wallis test is a nonparametric version of the classical one-way ANOVA. The function returns the p-value for the null hypothesis that all samples in \(X\) are drawn from the same population (or from different populations with the same mean).

If the p-value is near zero, this casts doubt on the null hypothesis and suggests that at least one sample mean is significantly different than the other sample means. The choice of a critical p-value to determine whether the result is judged "statistically significant" is left to the researcher. It is common to declare a result significant if the \(p\)-value is less than 0.05 or 0.01 .

The kr uskal wal I i s function displays two figures. The first figure is a standard ANOVA table, calculated using the ranks of the data rather than their numeric values. Ranks are found by ordering the data from smallest tolargest across all groups, and taking the numeric index of this ordering. The rank for a tied observation is equal to the average rank of all observations tied with it. For example, the following table shows the ranks for a small sample.
\begin{tabular}{l|l|l|l|l|l|ll}
\hline X value & 1.4 & 2.7 & 1.6 & 1.6 & 3.3 & 0.9 & 1.1 \\
Rank & 3 & 6 & 4.5 & 4.5 & 7 & 1 & 2 \\
\hline
\end{tabular}

The entries in the ANOVA table are the usual sums of squares, degrees of freedom, and other quantities calculated on the ranks. The usual F statistic is replaced by a chi-square statistic. The p-value measures the significance of the chi-square statistic.

The second figure displays box plots of each column of \(X\) (not the ranks of \(X\) ).
\(\mathrm{p}=\mathrm{kr}\) uskal wal Iis(X, group) uses the values in group (a character array or cell array) as labels for the box pl ot of the samples in \(X\), when \(X\) is a matrix. Each row of gr oup contains the label for the data in the corresponding column of \(X\), so gr oup must have length equal to the number of columns in \(X\).

When X is a vector, kr uskal wal I i s performs a Kruskal-Wallis test on the samples contained in \(X\), as indexed by input gr oup (a vector, character array, or cell array). Each element in group identifies thegroup (i.e., sample) to which the corresponding element in vector \(X\) belongs, so gr oup must have the same length as \(X\). The labels contained in gr oup are also used to annotate the box plot.

It is not necessary to label samples sequentially ( \(1,2,3, \ldots\) ). For example, if \(X\) contains measurements taken at three different temperatures, \(-27^{\circ}, 65^{\circ}\), and \(110^{\circ}\), you could use these numbers as the sample labels in group. If a row of gr oup contains an empty cell or empty string, that row and the corresponding observation in X are disregarded. NaNs in either input are similarly ignored.
\(\mathrm{p}=\) kruskal wal I is(X, group, ' di spl ayopt ' ) enables the table and box plot displays when ' di spl ayopt' is ' on' (default) and suppresses the displays when ' di spl ayopt' is ' off'.
[ p , table] \(=\) kruskal wal I is(...) returns the ANOVA table (including column and row labels) in cell array tabl e. (You can copy a text version of the ANOVA table to the clipboard by using the Copy Text item on the Edit menu.)
[ p , table, stats] = kruskal wallis(...) returns a st at structure that you can use to perform a follow-up multiple comparison test. The kruskal wall i s test evaluates the hypothesis that all samples have the same mean, against the alternative that the means are not all the same. Sometimes it is preferable to perform a test to determine which pairs of means are significantly different, and which are not. Y ou can use the mul t compar e function to perform such tests by supplying the st at s structure as input.

\section*{Assumptions}

The Kruskal-Wallis test makes the following assumptions about the data in X :
- All sample populations have the same continuous distribution, apart from a possibly different location.
- All observations are mutually independent.

The classical one-way ANOVA test replaces the first assumption with the stronger assumption that the populations have normal distributions.

\section*{Example}

Let's revisit the same material strength study that we used with the anoval function, to see if the nonparametric Kruskal-Wallis procedure leads to the same conclusion. Recall we are studying the strength of beams made from three alloys:
```

strength = [$$
\begin{array}{llllllllllll}{82}&{86}&{79}&{84 85 86 87 74 82 78 75 76 77 79 ...}\end{array}
$$]
79 77 78 82 79];
alloy = {'st','st','st','st','st','st','st','st',···.
' al 1',' al 1',' al 1',' al 1',' al 1',' al 1', ...
' al 2',' al 2',' al 2',' al 2',' al 2',' al 2' };

```

This time we try both classical and Kruskal-Wallis anova, omitting displays:
```

anoval(strength, alloy,' off')
ans =
1. 5264e-004
kruskal wal Iis(strength, al I oy, ' of f')
ans =
0. }001

```

Both tests find that the three alloys are significantly different, though the result is less significant according to the Kruskal-Wallis test. It is typical that when a dataset has a reasonable fit to the normal distribution, the classical ANOVA test will be more sensitive to differences between groups.

To understand when a nonparametric test may be more appropriate, let's see how the tests behave when the distribution is not normal. We can simulate this by replacing one of the values by an extreme value (an outlier).
```

st r engt h(20) =120;
anoval(strength, alloy, off')
ans =
0. }250

```
```

kruskal wallis(strength, al loy,' off')
ans =
0.0060

```

Now the classical ANOVA test does not find a significant difference, but the nonparametric procedure does. This illustrates one of the properties of nonparametric procedures - they are often not severely affected by changes in a small portion of the data.

Reference Hollander, M., and D. A. Wolfe, Nonparametric Statistical Methods, Wiley, 1973.

See Also anova1, boxpl ot , mul t compare

\section*{Purpose Kolmogorov-Smirnov test of the distribution of one sample.}

\section*{Syntax}

Description
```

H = kst est(X)
H = kstest(X, cdf)
H = kstest(X,cdf, al pha, tail)
[H, P, KSSTAT, CV] = kstest(X, cdf, al pha, t ai I)

```

H = kstest ( \(X\) ) performs a K olmogorov-Smirnov test to compare the values in the data vector X with a standard normal distribution (that is, a normal distribution having mean 0 and variance 1). The null hypothesis for the K olmogorov-Smirnov test is that \(X\) has a standard normal distribution. The alternative hypothesis that \(X\) does not have that distribution. The result \(H\) is 1 if we can reject the hypothesis that \(X\) has a standard normal distribution, or 0 if we cannot reject that hypothesis. We reject the hypothesis if the test is significant at the 5\% level.
For each potential value \(x\), the K olmogorov-Smirnov test compares the proportion of values less than \(x\) with the expected number predicted by the standard normal distribution. The kst est function uses the maximum difference over all \(x\) values is its test statistic. Mathematically, this can be written as
\[
\max (|F(x)-G(x)|)
\]
where \(F(x)\) is the proportion of \(X\) values less than or equal to \(x\) and \(G(x)\) is the standard normal cumulative distribution function evaluated at x .

H = kst est ( \(X\), cdf ) compares the distribution of \(X\) to the hypothesized distribution defined by the two-column matrix cdf. Column one contains a set of possible \(x\) values, and column two contains the corresponding hypothesized cumulative distribution function values \(G(x)\). If possible, you should define cdf so that column one contains the values in \(X\). If there are values in \(X\) not found in column one of cdf, kst est will approximate \(G(X)\) by interpolation. All values in X must lie in the interval between the smallest and largest values in the first col umn of cdf. If the second argument is empty (cdf =[]), kst est uses the standard normal distribution as if there were no second argument.

The K olmogorov-Smirnov test requires that cdf be predetermined. It is not accurate if cdf is estimated from the data. To test \(X\) against a normal distribution without specifying the parameters, uselilli et est instead.
\(H=\) kstest ( \(X\), cdf, al pha, tail) specifies the significance level al pha and a codetail for the type of alternative hypothesis. Iftail \(=0\) (the default), kst est performs a two-sided test with the general alternative \(F \neq G\). If tail \(=-1\), the alternative is that \(F<G\). Iftail \(=1\), the alternative is \(F>G\). The form of the test statistic depends on the value of \(t\) ail as follows.
```

tail $=0: \quad \max (|F(x)-G(x)|)$
tail $=-1: \quad \max (G(x)-F(x))$
tail $=1: \quad \max (F(x)-G(x))$

```
[ H, P, KSSTAT, CV] = kstest( \(\mathrm{X}, \mathrm{cdf}\), al pha, tail) also returns the observed p-value P, the observed K olmogorov-Smirnov statistic KSSTAT, and the cutoff valueCV for determining if KSSTAT is significant. If the return value of CV is NaN , then kstest determined the significance calculating a p-value according to an asymptotic formula rather than by comparing KSSTAT to a critical value.

\section*{Examples Example 1}

Let's generate some evenly spaced numbers and perform a K olmogorov-Smirnov test to see how well they fit to a normal distribution:
```

x = - 2: 1:4
x =
-2
[h, p, k, c] = kstest(x, [], 0. 05, 0)
h =
0
p =
0.13632
k =
0.41277
c =
0.48342

```

We cannot reject the null hypothesis that the values come from a standard normal distribution. Although intuitively it seems that these evenly-spaced integers could not follow a normal distribution, this example illustrates the difficulty in testing normality in small samples.

To understand the test, it is hel pful to generate an empirical cumulative distribution plot and overlay the theoretical normal distribution.
```

xx = - 3: . 1: 5;
cdf pl ot (x)
hol d on
pl ot (xx, normedf(xx),'r--')

```


The Kolmogorov-Smirnov test statistic is the maximum difference between these curves. It appears that this maximum of 0.41277 occurs as we approach \(x=1\). 0 from below. We can see that the empirical curve has the value \(3 / 7\) here, and we can easily verify that the difference between the curves is 0.41277 .
```

normedf(1) - 3/7
ans =
0.41277

```

We can also perform a one-sided test. By settingt ai l =-1 we indicate that our alternative is \(\mathrm{F}<\mathrm{G}\), so the test statistic counts only points where this inequality is true.
\[
[h, p, k]=\operatorname{kst} \operatorname{est}(x,[], .05,-1)
\]
```

h =
0
p =
0. }06818
k =
0.41277

```

The test statistic is the same as before because in fact \(\mathrm{F}<\mathrm{G}\) at \(\mathrm{x}=1\). 0 . However, the p-value is smaller for the one-sided test. If we carry out the other one-sided test, we see that the test statistic changes, and is the difference between the two curves near \(x=-1.0\).
```

[h, p,k] = kstest(x, [], 0. 05, 1)
h =
0
p =
0.77533
k =
0. }1270
2/7 - normedf(-1)
ans =
0. }1270

```

\section*{Example 2}

Now let's generate random numbers from a Weibull distribution, and test against that Weibull distribution and an exponential distribution.
```

x = wei br nd(1, 2, 100, 1) ;
kstest(x, [x wei bcdf(x, 1, 2)])
ans =
0
kstest(x, [x expcdf(x, 1)])
ans =
1

```

\section*{kstest}

\section*{Purpose}

Kolmogorov-Smirnov test to compare the distribution of two samples.

\author{
Syntax \\ Description
}
```

H = kstest 2(X1, X2)
H = kstest 2(X1, X2, al pha, tail)
[H, P, KSSTAT] = kstest(X, cdf, al pha,tail)

```

H = kstest 2( X1, X2) performs a two-sample K olmogorov-Smirnov test to
compare the distributions of values in the two data vectors X1 and X2. The null hypothesis for this test is that X1 and X2 have the same continuous distribution. The alternative hypothesis is that they have different continuous distributions. The result His 1 if we can reject the hypothesis that the distributions are the same, or 0 if we cannot reject that hypothesis. We reject the hypothesis if the test is significant at the 5\% level.

For each potential value \(x\), the K olmogorov-Smirnov test compares the proportion of \(X 1\) values less than \(x\) with proportion of \(X 2\) values less than \(x\). The kst est 2 function uses the maximum difference over all \(x\) values is its test statistic. Mathematically, this can be written as
\[
\max (|F 1(x)-F 2(x)|)
\]
where \(\mathrm{F} 1(\mathrm{x})\) is the proportion of X 1 values less than or equal to x and \(\mathrm{F} 2(\mathrm{x})\) is the proportion of \(X 2\) values less than or equal to \(x\).
\(\mathrm{H}=\) kstest 2( \(\mathrm{X} 1, \mathrm{X} 2\), al pha, tail) specifies the significance level al pha and a codetail for the type of alternative hypothesis. Iftail \(=0\) (the default), kst est performs a two-sided test with the general alternative \(F 1 \neq F 2\). If tail \(=-1\), the alternative is that \(\mathrm{F} 1<\mathrm{F} 2\). Iftail \(=1\), the alternative is \(\mathrm{F} 1>\mathrm{F} 2\). The form of the test statistic depends on the value of t ai I as follows:
\[
\begin{aligned}
\text { tai } \mathrm{I}=0: & \max (|\mathrm{F} 1(\mathrm{x})-\mathrm{F} 2(\mathrm{x})|) \\
\text { tai } \mathrm{I}=-1: & \max (\mathrm{F} 2(\mathrm{x})-\mathrm{F} 1(\mathrm{x})) \\
\text { tai } \mathrm{I}=1: & \max (\mathrm{F} 1(\mathrm{x})-\mathrm{F} 2(\mathrm{x}))
\end{aligned}
\]
[ H, P, KSSTAT, CV] = kstest(X, cdf, al pha, tail) also returns the observed p-value \(P\), the observed K olmogorov-Smirnov statistic KSSTAT, and the cutoff value CV for determining if KSSTAT is significant. If the return value of CV is NaN , then kst est determined the significance calculating a p-value according to an asymptotic formula rather than by comparing KSSTAT to a critical value.

\section*{kstest2}

\section*{Examples}

Let's compare the distributions of a small evenly-spaced sample and a larger normal sample:
```

x = - 1: 1: 5
y = randn(20,1);
[h, p,k] = kstest 2(x,y)
h =
1
p =
0.0403
k =
0.5714

```

The difference between their distributions is significant at the \(5 \%\) level ( \(p=4 \%\) ). To visualize the difference, we can overlay plots of the two empirical cumulative distribution functions. The Kolmogorov-Smirnov statistic is the maximum difference between thesefunctions. After changing the col or and line style of one of the two curves, we can see that the maximum difference appears to be near \(x=1\). 9 . We can also verify that the difference equals the \(k\) value that kst est 2 reports:
cdf pl ot ( x )
hold on
cdf pl ot (y)
h = findobj (gca, 'type', 'line');
set(h(1),'linestyle',':',' col or', 'r')
1-3/7
ans \(=\)
0.5714


See Also
kstest,lilliet est

\section*{kurtosis}

Purpose Sample kurtosis.
Syntax \(\quad\)\begin{tabular}{ll}
\(k\) & \(=\operatorname{kurtosi} s(X)\) \\
\(k\) & \(=\operatorname{kurtosi} s(X, f l a g)\)
\end{tabular}

Description \(\quad k=\) kurtosi \(s(X)\) returns the samplekurtosis of \(X\). For vectors, kurtosi \(s(x)\) is the kurtosis of the elements in the vector \(x\). For matrices kurt osi \(s(X)\) returns the sample kurtosis for each column of \(X\).

Kurtosis is a measure of how outlier-prone a distribution is. The kurtosis of the normal distribution is 3 . Distributions that are more outlier-prone than the normal distribution have kurtosis greater than 3; distributions that are less outlier-prone have kurtosis less than 3.

The kurtosis of a distribution is defined as
\[
k=\frac{E(x-\mu)^{4}}{\sigma^{4}}
\]
where \(\mu\) is the mean of \(x, \sigma\) is the standard deviation of \(x\), and \(E(t)\) represents the expected value of the quantity \(t\).

Note Some definitions of kurtosis subtract 3 from the computed value, so that the normal distribution has kurtosis of 0 . The kur tosi s function does not use this convention.
\(\mathrm{k}=\) kurtosis(X,flag) specifies whether to correct for bias ( fl ag \(=0\) ) or not ( fl ag \(=1\), the default). When X represents a sample from a population, the kurtosis of X is biased, that is, it will tend to differ from the population kurtosis by a systematic amount that depends on the size of the sample. You can set fl ag \(=0\) to correct for this systematic bias.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{10}{*}{Example} & \multicolumn{4}{|l|}{\(X=\operatorname{randn}\left(\left[\begin{array}{ll}5 & 4\end{array}\right]\right)\)} \\
\hline & \(\mathrm{X}=\) & & & \\
\hline & 1. 1650 & 1. 6961 & -1. 4462 & -0. 3600 \\
\hline & 0. 6268 & 0. 0591 & -0. 7012 & -0. 1356 \\
\hline & 0. 0751 & 1. 7971 & 1. 2460 & -1. 3493 \\
\hline & 0. 3516 & 0. 2641 & -0. 6390 & -1. 2704 \\
\hline & -0. 6965 & 0. 8717 & 0. 5774 & 0. 9846 \\
\hline & \multicolumn{4}{|l|}{\(\mathrm{k}=\) kurtosis \((\mathrm{X})\)} \\
\hline & \multicolumn{4}{|l|}{\(\mathrm{k}=\)} \\
\hline & 2. 1658 & 1. 2967 & 1. 6378 & 1. 9589 \\
\hline
\end{tabular}

\author{
See Also
}
mean, moment, skewness, st d, var

Purpose Leverage values for a regression.
Syntax \(\quad \begin{array}{ll}\mathrm{h} & =1 \text { ever age (dat } \mathrm{a}) \\ \mathrm{h} & =1 \text { ever age (dat } \mathrm{a},\end{array}\) ' model ' \()\)

Description

Example

Algorithm

Reference

\section*{See Also} dataset this value is 0.7692 .
```

l oad hal d
h = max(l everage(i ngredi ents,'li near'))
h =
0.7004

```
\([\mathrm{Q}, \mathrm{R}]=\operatorname{qr}\left(x 2 \mathrm{f} x\left(\right.\right.\) dat \(\mathrm{a},{ }^{\prime}\) model ' \()\) );
l everage \(=(\operatorname{sum}(Q . * Q))^{\prime}\) Elsevier/North-Holland.

One rule of thumb is to compare the leverageto \(2 p / n\) where \(n\) is the number of observations and \(p\) is the number of parameters in the model. F or the Hald

Since \(0.7004<0.7692\), there are no high leverage points using this rule.

Goodall, C. R. (1993). Computation using the QR decomposition. Handbook in Statistics, Volume 9. Statistical Computing (C. R. Rao, ed.). Amsterdam, NL

\section*{Purpose Lilliefors test for goodness of fit to a normal distribution.}
```

Syntax
H=| |l|i etest(X)
H=|illi etest(X, al pha)
[H, P, LSTAT, CV] = lilli et est(X, al pha)

```

Description \(H=I i l l i\) et est \((X)\) performs the Lilliefors test on the input data vector \(X\) and returns H , the result of the hypothesis test. The result His 1 if we can reject the hypothesis that \(X\) has a normal distribution, or 0 if we cannot reject that hypothesis. We reject the hypothesis if the test is significant at the \(5 \%\) level.

The Lilliefors test evaluates the hypothesis that X has a normal distribution with unspecified mean and variance, against the alternative that \(X\) does not have a normal distribution. This test compares the empirical distribution of \(X\) with a normal distribution having the same mean and variance as \(X\). It is similar to the K olmogorov-Smirnov test, but it adjusts for the fact that the parameters of the normal distribution are estimated from X rather than specified in advance.
\(\mathrm{H}=\mathrm{I} \mathrm{I} \| \mathrm{l}\) etest ( X , al pha) performs the Lilliefors test at the 100*al pha\% level rather than the \(5 \%\) level. al pha must be between 0.01 and 0.2 .
[ H, P, LSTAT, CV] = I illi et est ( X , al pha) returns three additional outputs. P is the \(p\)-value of the test, obtained by linear interpolation in a set of table created by Lilliefors. LSTAT is the value of the test statistic. CV is the critical value for determining whether to reject the null hypothesis. If the value of LSTAT is outside the range of the Lilliefors table, P is returned as NaN but H indicates whether to reject the hypothesis.

Example Do car weights follow a normal distribution? Not exactly, because weights are always positive, and a normal distribution allows both positive and negative values. However, perhaps the normal distribution is a reasonable approximation.
```

l oad carsmml|
[h p | c] = lil|ietest(Wei ght);
[h p l c]

```
ans \(=\)
1. 0000
0.0232
0. 1032
0. 0886

The Lilliefors test statistic of 0.10317 is larger than the cutoff value of 0.0886 for a \(5 \%\) level test, so we reject the hypothesis of normality. In fact, the p-value of this test is approximately 0.02 .

To visualize the distribution, we can make a histogram. This graph shows that the distribution is skewed to the right - from the peak near 2250, the frequencies drop off abruptly to the left but more gradually to the right.
hi st ( Wei ght)


Sometimes it is possible to transform a variable to make its distribution more nearly normal. A log transformation, in particular, tends to compensate for skewness to the right.
```

[h p | c] = |i||i et est(| og(Vei ght))
ans =

```
0
0. 13481
0. 077924
0. 0886

Now the p-value is approximately 0.13 , so we do not reject the hypothesis.

\section*{Iillietest}

\author{
Reference \\ See Also hi st, j bt est, kstest 2
}

\section*{linkage}
Purpose Create hierarchical cluster tree.
Syntax \(\quad\)\begin{tabular}{rl}
\(Z\) & \(=1 i \operatorname{nkage}(Y)\) \\
\(Z\) & \(=1 i \operatorname{nkage}\left(Y\right.\), ' met hod' \(\left.^{\prime}\right)\)
\end{tabular}

Description
\(Z=1 i n k a g e(Y)\) creates a hierarchical cluster tree, using the Single Linkage al gorithm. The input matrix, Y , is the distance vector output by the pdi st function, a vector of length \(((\mathrm{m}-1) \cdot \mathrm{m} / 2)\)-by-1, where m is the number of objects in the original dataset.
\(Z=1 i n k a g e(Y\), ' met hod' ) computes a hierarchical cluster tree using the algorithm specified by ' met hod' , where ' met hod' can be any of the following character strings that identify ways to create the cluster hierarchy. Their definitions are explained in "Mathematical Definitions" on page 2-179.
\begin{tabular}{l|l}
\hline String & Meaning \\
\hline ' si ngl e' & Shortest distance (default) \\
\hline ' compl et e' & Largest distance \\
\hline ' aver age' & Average distance \\
\hline ' cent roi d' & Centroid distance \\
\hline ' ward' & Incremental sum of squares \\
\hline
\end{tabular}

The output, z , is an (m-1)-by-3 matrix containing cluster tree information. The leaf nodes in the cluster hierarchy are the objects in the original dataset, numbered from 1 to \(m\). They are the singleton clusters from which all higher clusters are built. E ach newly formed cluster, corresponding to row in Z , is assigned the index \(\mathrm{m}+\mathrm{i}\), where m is the total number of initial leaves.

Columns 1 and \(2, Z(i, 1: 2)\), contain the indices of the objects that were linked in pairs to form a new cluster. This new cluster is assigned the index valuem+i. There are m-1 higher clusters that correspond to the interior nodes of the hierarchical cluster tree.

Column 3, Z(i, 3), contains the corresponding linkage distances between the objects paired in the clusters at each row i .

For example, consider a case with 30 initial nodes. If the tenth cluster formed by the I i nkage function combines object 5 and object 7 and their distance is 1.5 , then row 10 of \(Z\) will contain the values ( \(5,7,1.5\) ). This newly formed cluster will have the index \(10+30=40\). If cluster 40 shows up in a later row, that means this newly formed cluster is being combined again into some bigger cluster.

\section*{Mathematical Definitions}

The ' net hod' argument is a character string that specifies the algorithm used to generate the hierarchical cluster tree information. These linkage al gorithms are based on various measurements of proximity between two groups of objects. If \(n_{r}\) is the number of objects in cluster \(r\) and \(n_{s}\) is the number of objects in cluster \(s\), and \(x_{r i}\) is the ith object in cluster \(r\), the definitions of these various measurements are as follows:
- Singlelinkage, also called nearest neighbor, uses the smallest distance between objects in the two groups.
\[
d(r, s)=\min \left(\operatorname{dist}\left(x_{r i}, x_{s j}\right)\right), i \in\left(i, \ldots, n_{r}\right), j \in\left(1, \ldots, n_{s}\right)
\]
- Completelinkage, also called furthest neighbor, uses the largest distance between objects in the two groups.
\[
d(r, s)=\max \left(\operatorname{dist}\left(x_{r i}, x_{s j}\right)\right), i \in\left(1, \ldots, n_{r}\right), j \in\left(1, \ldots, n_{s}\right)
\]
- Averagelinkage uses the average distance between all pairs of objects in cluster \(r\) and cluster \(s\).
\[
d(r, s)=\frac{1}{n_{r} n_{s}} \sum_{i=1}^{n_{r}} \sum_{j=1}^{n_{s}} \operatorname{dist}\left(x_{r i}, x_{s j}\right)
\]
- Centroid linkage uses the distance between the centroids of the two groups.
\[
d(r, s)=d\left(\bar{x}_{r}, \bar{x}_{s}\right)
\]
where
\[
x_{r}=\frac{1}{n_{r}} \sum_{i=1}^{n_{r}} x_{r i}
\]
and \(\mathrm{x}_{\mathrm{s}}\) is defined similarly.
- Ward linkage uses the incremental sum of squares; that is, the increase in the total within-group sum of squares as a result of joining groups \(r\) and \(s\). It is given by
\[
d(r, s)=n_{r} n_{s} d_{r s}^{2} /\left(n_{r}+n_{s}\right)
\]
where \(d_{r s}^{2}\) is the distance between cluster \(r\) and cluster \(s\) defined in the Centroid linkage. The within-group sum of squares of a cluster is defined as the sum of the squares of the distance between all objects in the cluster and the centroid of the cluster.

\section*{Example}
```

X = [3 1. 7; 1 1; 2 3; 2 2. 5; 1.2 1; 1. 1 1. 5; 3 1];
Y = pdi st(x);
Z = li nkage(y)
Z =

2.0000	5.0000	0.2000
3.0000	4.0000	0.5000
8.0000	6.0000	0.5099
1.0000	7.0000	0.7000
11.0000	9.0000	1.2806
12.0000	10.0000	1.3454

```

See Also
cl uster, cl ust er dat a, cophenet, dendrogr am i nconsi stent, pdi st, squar ef or m

\section*{Purpose Lognormal cumulative distribution function.}

Syntax \(\quad P=I\) ogncdf \((X, M\), SI GMA)

Description

\section*{Example}

\section*{Reference}

See Also cdf, I ogni nv, l ognpdf, I ognr nd, I ognst at matrix with the same dimensions as the other inputs.

The lognormal cdf is
\[
p=F(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} 0 \frac{e^{\frac{-(\ln (t)-\mu)^{2}}{2 \sigma^{2}}}}{t} d t
\]
```

x = (0: 0. 2:10);
y = I ogncdf (}x,0,1)
pl ot (x,y); grid;
xl abel('x'); yl abel('p');

```
 Edition, J ohn Wiley and Sons, 1993. p. 102-105.

P = I ognc df ( \(\mathrm{X}, \mathrm{M}, \mathrm{SI} \mathrm{GM}\) ) computes the lognormal cdf at each of the values in \(X\) using the corresponding means in MJ and standard deviations in SI GMA. Vector or matrix inputs for \(\mathrm{X}, \mathrm{M}\), and SI GMA must have the same size, which is also the size of P. A scalar input for \(\mathrm{X}, \mathrm{MJ}\), or SI GMA is expanded to a constant

Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, Second

\section*{logninv}

Purpose Inverse of the lognormal cumulative distribution function (cdf).

\section*{Syntax \(\quad X=1\) ogni nv( \(P, M\), SI GMA \()\)}

\section*{Description}
\(X=1\) ogni \(n v(P, M J, S I G M A)\) computes the inverse lognormal cdf with mean MJ and standard deviation SI GMA, at the corresponding probabilities in P. Vector or matrix inputs for \(\mathrm{P}, \mathrm{MJ}\), and SI GMA must have the same size, which is al so the size of X . A scal ar input for \(\mathrm{P}, \mathrm{M}\), or SI GMA is expanded to a constant matrix with the same dimensions as the other inputs.

We define the lognormal inverse function in terms of the lognormal cdf as
\[
x=F^{-1}(p \mid \mu, \sigma)=\{x: F(x \mid \mu, \sigma)=p\}
\]
where
\[
p=F(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} 0 \frac{e^{\frac{-(\ln (t)-\mu)^{2}}{2 \sigma^{2}}}}{t} d t
\]

\section*{Example}
```

$\mathrm{p}=(0.005: 0.01: 0.995)$;
crit = logni nv($\mathrm{p}, 1,0.5$);
pl ot (p, crit)
xl abel('Probability'); yl abel('Critical Val ue'); grid

```


\section*{logninv}

\author{
Reference Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, Second Edition, J ohn Wiley and Sons, 1993. p. 102-105. \\ See Also i cdf, I ogncdf, l ognpdf, I ognr nd, l ognst at
}

\section*{lognpdf}
Purpose Lognormal probability density function (pdf).

\section*{Syntax \(\quad Y=1\) ognpdf \((X, M\), SI GMA)}

Description
\(Y=I\) ogncdf ( \(X, M\), SI GMA) computes the lognormal cdf at each of the values in \(X\) using the corresponding means in MJ and standard deviations in SI GMA. Vector or matrix inputs for X, M, and SI GMA must have the same size, which is also the size of Y. A scalar input for X, M, or SI GMA is expanded to a constant matrix with the same dimensions as the other inputs

The lognormal pdf is
\[
y=f(x \mid \mu, \sigma)=\frac{1}{x \sigma \sqrt{2 \pi}} e^{\frac{-(\ln (x)-\mu)^{2}}{2 \sigma^{2}}}
\]

\section*{Example}

Reference
```

x = (0: 0.02: 10);
y = I ognpdf (x, 0, 1);
pl ot(x,y); grid;
xl abel('x'); yl abel('p')

```


Mood, A. M., F.A. Graybill, and D.C. Boes, Introduction to the Theory of Statistics, Third Edition, McGraw-Hill 1974 p. 540-541.

See Also I ogncdf, I ogni nv, I ognr nd, I ognst at, pdf
\begin{tabular}{|c|c|}
\hline Purpose & Random matrices from the lognormal distribution. \\
\hline Syntax & \(\mathrm{R}=1\) ognr nd( MU, SI GMA) \\
\hline & \(\mathrm{R}=1\) ognr nd( MU, SI GMA, m) \\
\hline & \(R=I \operatorname{ognr} n d(M, S I G M A, m n)\) \\
\hline Description & \(R=1\) ognr nd(MJ, SI GMA) generates lognormal random numbers with parameters MJ and SI GMA. Vector or matrix inputs for MJ and SI GMA must have the same size, which is also the size of R. A scalar input for MJ or SI GMA is expanded to a constant matrix with the same dimensions as the other input. \\
\hline & \(R=I\) ognr nd(MJ, SI GMA, m) generates lognormal random numbers with parameters MJ and SI GMA, where mis a 1-by-2 vector that contains the row and column dimensions of R. \\
\hline & \(R=I\) ognr nd( \(M, S I G M A, m n)\) generates lognormal random numbers with parameters MJ and SI GMA, where scalars mand \(n\) are the row and column dimensions of \(R\). \\
\hline Example & \(r=1 \operatorname{ognrnd}(0,1,4,3)\) \\
\hline & \(r=\) \\
\hline & \(\begin{array}{lll}3.2058 & 0.4983 & 1.3022\end{array}\) \\
\hline & \(\begin{array}{lll}\text { 1. } 8717 & 5.4529 & \text { 2. } 3909\end{array}\) \\
\hline & 1. 0780 1.0608 0.2355 \\
\hline & 1. \(4213 \quad 6.0320 \quad 0.4960\) \\
\hline Reference & Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, Second Edition, J ohn Wiley and Sons, 1993. p. 102-105. \\
\hline See Also & random I ogncdf, I ogni nv, l ognpdf, I ognst at \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Purpose & Mean and variance for the lognormal distribution. \\
\hline Syntax & [ M V\(]=\) l ognst at ( \(\mathrm{M}, \mathrm{SI}\) GMA ) \\
\hline \multirow[t]{5}{*}{Description} & [ \(M \mathrm{~V}\) ] = I ognst at ( \(M \mathrm{U}, \mathrm{SI}\) GMA) returns the mean and variance of the lognormal distribution with parameters MJ and SI GMA. Vector or matrix inputs for MU and SI GMA must have the same size, which is also the size of Mand V. A scalar input for MJ or SI GMA is expanded to a constant matrix with the same dimensions as the other input. \\
\hline & The mean of the lognormal distribution with parameters \(\mu\) and \(\sigma\) is \\
\hline & \[
e^{\left(\mu+\frac{\sigma^{2}}{2}\right)}
\] \\
\hline & and the variance is \\
\hline & \(e^{\left(2 \mu+2 \sigma^{2}\right)}-e^{\left(2 \mu+\sigma^{2}\right)}\) \\
\hline \multirow[t]{4}{*}{Example} & \([m v]=1 \operatorname{ognstat}(0,1)\) \\
\hline & \[
\mathrm{m}={ }_{1.6487}
\] \\
\hline & \(\mathrm{v}=\) \\
\hline & 7. 0212 \\
\hline Reference & Mood, A. M., F.A. Graybill, and D.C. Boes, Introduction to the Theory of Statistics, Third Edition, McGraw-Hill 1974 p. 540-541. \\
\hline See Also & I ogncdf, I ogni nv, l ognr nd, l ognr nd \\
\hline
\end{tabular}

\section*{Purpose Least squares fit line(s).}

\section*{Syntax}

Isline
h = lsline
Description I sl i ne superimposes the least squares line on each line object in the current axes (except Li neSt yl es ' - ','--', ' - ' ).
\(\mathrm{h}=\mathrm{I}\) sline returns the handles to the line objects.

\section*{Example}
\[
\begin{aligned}
& y=\left[\begin{array}{lllllllllll}
2 & 3.4 & 5 . & 6 & 8 & 11 & 12.3 & 13.8 & 16 & 18.8 & 19.9
\end{array}\right] \text { '; } \\
& \text { pl ot }\left(y,{ }^{\prime}+\prime\right) ; \\
& \text { I sline; }
\end{aligned}
\]


See Also pol yfit, pol yval

Purpose Mean absolute deviation (MAD) of a sample of data.

\section*{Syntax \\ \(y=\operatorname{mad}(X)\)}

Description

\section*{Examples}
\(y=\operatorname{mad}(X)\) computes the average of the absolute differences between a set of data and the sample mean of that data. For vectors, \(n \not ⿴ d(x)\) returns the mean absolute deviation of the elements of \(x\). For matrices, \(\operatorname{mad}(X)\) returns the MAD of each column of \(X\).

The MAD is less efficient than the standard deviation as an estimate of the spread when the data is all from the normal distribution.

Multiply the MAD by 1.3 to estimate \(\sigma\) (the second parameter of the normal distribution).

This example shows a Monte Carlo simulation of the relative efficiency of the MAD to the sample standard deviation for normal data.
```

x = normmd(0, 1, 100, 100);
s = std(x);
s_MAD = 1. 3 * mad(x);
efficiency = (norm(s - 1)./norm(ts_MAD - 1)).^2
efficiency =
0. }597

```

See Also std, range
Purpose Mahalanobis distance.
Syntax \(\mathrm{d}=\operatorname{mahal}(\mathrm{Y}, \mathrm{X})\)
Description mahal ( \(\mathrm{Y}, \mathrm{X}\) ) computes the Mahalanobis distance of each point (row) of thematrix \(Y\) from the sample in the matrix \(X\).The number of col umns of \(Y\) must equal the number of columns in \(X\), but thenumber of rows may differ. The number of rows in X must exceed the numberof columns.The M ahalanobis distance is a multivariate measure of the separation of a dataset from a point in space. It is the criterion minimized in linear discriminantanalysis.
Example The Mahalanobis distance of a matrix \(r\) when applied to itself is a way to find outliers.
```

r = mvnrnd([0 0],[1 0. 9; 0.9 1],100);
r = [r;10 10];
d = nahal (r,r);
| ast6 = d(96: 101)
| ast6 =

```
    1. 1036
    2. 2353
    2. 0219
    0. 3876
    1. 5571
    52. 7381
The last element is clearly an outlier.
See Also ..... cl assify

Purpose One-way Multivariate Analysis of Variance (MANOVA).
Syntax \(\quad d=\operatorname{manoval}(X\), group \()\)
d = manova1( X , group, al pha)
[ \(\mathrm{d}, \mathrm{p}]=\) manoval(...)
[d, p,stats] = anoval(...)
d = manoval( X , group) performs a one-way Multivariate Analysis of Variance (MANOVA) for comparing the multivariate means of the columns of \(X\), grouped by group. \(X\) is an m-by-n matrix of data values, and each row is a vector of measurements on n variables for a single observation. gr oup is a grouping variable defined as a vector, string array, or cell array of strings. Two observations are in the same group if they have the same value in the group array. The observations in each group represent a sample from a population.

The function returns \(d\), an estimate of the dimension of the space containing the group means. manoval tests the null hypothesis that the means of each group are the samen-dimensional multivariate vector, and that any difference observed in the sampleX is due to random chance. If \(d=0\), there is no evidence to reject that hypothesis. If \(d=1\), then you can reject the null hypothesis at the \(5 \%\) level, but you cannot reject the hypothesis that the multivariate means lie on the sameline. Similarly, if d \(=2\) themultivariate means may lie on the same plane in n-dimensional space, but not on the same line.
d = manova1(X, group, al pha) gives control of the significance level, al pha. The return valued will be the smallest dimension having \(p>\) al pha, wherep is a \(p\)-value for testing whether the means lie in a space of that dimension.
\([d, p]=\) manoval( \(\ldots\) ) also returns a \(p\), a vector of \(p\)-values for testing whether the means lie in a space of dimension 0,1 , and so on. The largest possible dimension is either the dimension of the space, or one less than the number of groups. There is one element of \(p\) for each dimension up to, but not including, the largest.

If the ith p-value is near zero, this casts doubt on the hypothesis that the group means lie on a space of \(i-1\) dimensions. The choice of a critical \(p\)-value to determine whether the result is judged "statistically significant" is left to the researcher and is specified by the value of the input argument al pha. It is common to decl are a result significant if the p-value is less than 0.05 or 0.01 .
\([d, p\), stat \(s]=\operatorname{anova1}(\ldots)\) also returns st at \(s\), a structure containing additional MANOVA results. The structure contains the following fields.

\section*{Field Contents}

W Within-groups sum of squares and cross-products matrix
B \(\quad\) Between-groups sum of squares and cross-products matrix
T Total sum of squares and cross-products matrix
df W Degrees of freedom for W
df B Degrees of freedom for B
df T Degrees of freedom for T
I andda Vector of values of Wilk's lambda test statistic for testing whether the means have dimension 0,1 , etc.
chi sq Transformation of I ambda to an approximate chi-square distribution
chi sqdf Degrees of freedom for chi sq
ei genval Eigenvalues of \(\mathrm{W}^{-1} \mathrm{~B}\)
ei genvec E igenvectors of \(W^{-1} B\); these are the coefficients for the canonical variables C, and they are scaled so the within-group variance of the canonical variables is 1
canon Canonical variables \(C\), equal to \(\mathrm{XC}^{*}\) ei genvec, where XC is X with columns centered by subtracting their means
ndi st A vector of Mahalanobis distances from each point to the mean of its group
groli st A matrix of Mahalanobis distances between each pair of group means

The canonical variables \(C\) are linear combinations of the original variables, chosen to maximize the separation between groups. Specifically, C( : , 1) is the linear combination of the X columns that has the maximum separation between groups. This means that among all possible linear combinations, it is the one with the most significant \(F\) statistic in a one-way analysis of variance.
\(\mathrm{C}(:, 2)\) has the maximum separation subject to it being orthogonal to \(\mathrm{C}(:, 1)\), and so on.

You may find it useful to use the outputs from manoval along with other functions to supplement your analysis. For example, you may want to start with a grouped scatter plot matrix of the original variables using gpl ot nat rix. You can use gscat ter to visualize the group separation using the first two canonical variables. You can use manovacl ust er to graph a dendrogram showing the clusters among the group means.

\section*{Assumptions}

The MANOVA test makes the following assumptions about the data in X:
- The populations for each group are normally distributed.
- The variance-covariance matrix is the same for each population.
- All observations are mutually independent.

\section*{Example \\ We can usemanoval to determine whether thereare differences in the averages of four car characteristics, among groups defined by the country where the cars were made. \\ I oad carbig \\ [d, p] = manoval([ MPG Accel er ation Wei ght Di spl acement], Ori gi n) \\ d \(=\) \\ 3 \\ \(\mathrm{p}=\) \\ 0 \\ 0. 0000 \\ 0. 0075 \\ 0. 1934}

There are four dimensions in the input matrix, so the group means must lie in a four-dimensional space. manoval shows that we cannot reject the hypothesis that the means lie in a three-dimensional subspace.

\title{
References
}

See Also anova1, gscatter, gpl ot matrix, manovacl uster

\section*{Purpose}
\begin{tabular}{ll} 
Syntax & manovacl ust er ( \(s\) t at \(s\) ) \\
& manovacl ust er (st at \(s, '\) met hod' ) \\
& \(H=\) manovacl ust er (st at s)
\end{tabular}

\section*{Description}

\section*{Example}
```

mmnovacl uster(st ats)
H = m@novacl uster(stats)

``` in the figure.

Plot dendrogram showing group mean clusters after MANOVA.
manovacl uster(st at s) generates a dendrogram plot of the group means after a multivariate analysis of variance (MANOVA). st at s is the output st at s structure from manova1. The clusters are computed by applying the single linkage method to the matrix of Mahal anobis distances between group means.

See dendr ogr amfor more information on the graphical output from this function. The dendrogram is most useful when the number of groups is large.
manovacl uster (st at s, ' met hod' ) uses the specified method in place of single linkage. ' met hod' can be any of the following character strings that identify ways to create the cluster hierarchy. See I i nkage for further explanation.
\begin{tabular}{l|l}
\hline String & Meaning \\
\hline ' si ngl e' & Shortest distance (default) \\
\hline ' compl et e' & Largest distance \\
\hline ' aver age' & Average distance \\
\hline ' cent roi d' & Centroid distance \\
\hline ' ward' & Incremental sum of squares \\
\hline
\end{tabular}

H = manovacl uster(stats, 'met hod' ) returns a vector of handles to the lines

Let's analyze the larger car dataset to determine which countries produce cars with the most similar characteristics.
```

I oad carbig
X = [MPG Accel erati on Wei ght Di spl acement];
[d,p,stats] = manoval(X,Origi n);
manovacl uster(stats)

```


\footnotetext{
See Also
cl ust er, dendrogram I i nkage, nanoval
}

Purpose Average or mean value of vectors and matrices.

\section*{Syntax \\ \(\mathrm{m}=\operatorname{mean}(\mathrm{X})\)}

\section*{Description}
\(\mathrm{m}=\mathrm{mean}(\mathrm{X})\) calculates the sample average
\[
\bar{x}_{\mathrm{j}}=\frac{1}{n} \sum_{i=1}^{n} x_{i j}
\]

For vectors, nean \((x)\) is the mean value of the elements in vector \(x\). For matrices, mean \((X)\) is a row vector containing the mean value of each column.

The nean function is part of the standard MATLAB language.
\(\begin{array}{ll}\text { Ex ample } & \text { These commands generate five samples of } 100 \text { normal random numbers with } \\ \text { mean, zero, and standard deviation, one. The sample averages in } x \text { bar are } \\ \text { much less variable }(0.00 \pm 0.10) \text {. }\end{array}\)
```

x = normmd(0, 1, 100,5);
xbar = mean(x)
xbar =

```
0. 0727
0. 0264
0. 0351
0. 0424
0. 0752

See Also medi an, st d, cov, cor rcoef, var

\section*{Purpose Median value of vectors and matrices.}

\section*{Syntax \\ \(\mathrm{m}=\) medi \(\mathrm{an}(\mathrm{X})\)}

Description
\(m=\) medi \(a n(X)\) calculates the median value, which is the 50th percentile of a sample. The median is a robust estimate of the center of a sample of data, since outliers have little effect on it.

For vectors, medi \(\mathrm{an}(\mathrm{x})\) is the median value of the elements in vector x . For matrices, medi \(\mathrm{an}(\mathrm{X})\) is a row vector containing the median value of each column. Since medi an is implemented using sort, it can be costly for large matrices.

The medi an function is part of the standard MATLAB Ianguage.

\section*{Examples}
```

xodd = 1: 5;
modd = medi an(xodd)
modd =
3
meven = medi an(xeven)
meven =
2. }500

```

This example shows robustness of the median to outliers.
```

xoutlier = [x 10000];
moutlier = medi an(xoutlier)
moutlier =

```
    3

See Also mean, st d, cov, cor r coef
Purpose Maximum likelihood estimation.
\begin{tabular}{|c|c|}
\hline Syntax & phat \(=\) me( \({ }^{\text {di }}\) st \({ }^{\prime}\), data) \\
\hline & [phat, pci ] = mie('di st', data) \\
\hline & [phat, pci ] = mie('di st', data, al pha) \\
\hline & [ phat, pci ] = mie('di st', data, al pha, p1) \\
\hline
\end{tabular}

Description
phat \(=\mathrm{mhe}\) ('di st', data) returns themaximum likelihood estimates (MLEs) for the distribution specified in ' di st ' using the sample in the vector, dat a. See "Overview of the Distributions" on page 1-12 for the list of available distributions.
[ phat, pci ] = mi e(' di st', dat a) returns the MLE s and 95\% percent confidence intervals.
[ phat, pci ] = mi e('di st', data, al pha) returns the MLEs and 100( 1- al pha) \% confidence intervals given the data and the specified al pha.
[ phat, pci ] = mi e('di st', dat a, al pha, p1) is used for the binomial distribution only, where p1 is the number of trials.

\section*{Example}
```

rv = bi nornd(20, 0.75)
rv =
16
[p, pci] = ml e(' bi nomi al ' ,rv, 0.05, 20)
p =
0. }800
pci =
0.5634
0. }942

```

See Also bet afit, bi nofit, expfit, ganfit, nornfit, poissfit, wei bfit

\section*{Purpose Central moment of all orders}

\section*{Syntax \\ \(\mathrm{m}=\) moment \((\mathrm{X}\), or der \()\)}
\(\mathrm{m}=\) monent ( X , or der) returns the central moment of X specified by the positive integer or der. F or vectors, moment ( \(x\), or der ) returns the central moment of the specified order for the elements of \(x\). F or matrices, moment ( X , or der) returns central moment of the specified order for each column.

Note that the central first moment is zero, and the second central moment is the variance computed using a divisor of \(n\) rather than \(n-1\), where \(n\) is the length of the vector x or the number of rows in the matrix X .

The central moment of order \(k\) of a distribution is defined as
\[
m_{n}=E(x-\mu)^{k}
\]
where \(E(x)\) is the expected value of \(x\).
```

X = randn([6 5])
X =
1.2460
0.6268
1. }797
-0. }639
1. }270
-0.0562
0.9846
0.5135
0. }075
0. }264
0.5774
0.0449
0. }396
0. }351
0. }871
-0. }360
-0.7989
0. }756
-0.6965 -1.4462 -0.1356
0.7652
0.4005
1. }696
-0.7012
0. }861
-1. }341
m = moment (}X,3\mathrm{)
m}
-0.0282 0.0571 0.1253 0.1460 - 0.4486

```
See Also kurtosi s, mean, skewness, st d, var

Purpose Multiple comparison test of means or other estimates.
Syntax

Description
```

c = mul tcompare(stats)
c = mul tcompare(stats, al pha)
c = mul tcompare(stats, al pha,' di spl ayopt')
c = mul tcompare(stats, al pha,' di spl ayopt ',' ct ype')
c = mul tcompare(stats, al pha,' di spl ayopt',' ct ype',' estimate')
c = mul tcompare(stats, al pha, ' di spl ayopt',' ct ype',' estimate', di m)
[c,m] = multcompare(...)
[c,m,h] = multcompare(...)

```
c = mul tcompare(stats) performs a multiple comparison test using the
information in the st at s structure, and returns a matrix c of pairwise comparison results. It also displays an interactive figure presenting a graphical representation of the test.

In a one-way analysis of variance, you compare the means of several groups to test the hypothesis that they are all the same, against the general alternative that they are not all the same. Sometimes this alternative may be too general. You may need information about which pairs of means are significantly different, and which are not. A test that can provide such information is called a "multiple comparison procedure."

When you perform a simplet-test of one group mean against another, you specify a significance level that determines the cutoff value of the t statistic. F or example, you can specify the value al pha \(=0.05\) to insure that when there is no real difference, you will incorrectly find a signifi cant difference no more than \(5 \%\) of the time. When there are many group means, there are also many pairs to compare. If you applied an ordinary t-test in this situation, the al pha value would apply to each comparison, so the chance of incorrectly finding a significant difference would increase with the number of comparisons. Multiple comparison procedures are designed to provide an upper bound on the probability that any comparison will be incorrectly found significant.

The output c contains the results of thetest in the form of a five-column matrix. Each row of the matrix represents one test, and there is one row for each pair of groups. The entries in the row indicate the means being compared, the estimated difference in means, and a confidence interval for the difference.

For example, suppose one row contains the following entries.
1. 9442
2. 0000
5. 0000
8. 2206
14. 4971

These numbers indicate that the mean of group 2 minus the mean of group 5 is estimated to be 8.2206, and a 95\% confidence interval for the true mean is [1.9442, 14.4971].

In this example the confidence interval does not contain 0.0, so the difference is significant at the 0.05 level. If the confidence interval did contain 0.0 , the difference would not be significant at the 0.05 level.

The mul t compare function also displays a graph with each group mean represented by a symbol and an interval around the symbol. Two means are significantly different if their intervals are disjoint, and are not significantly different if their intervals overlap. You can use the mouse to select any group, and the graph will highlight any other groups that are signifi cantly different from it.
c = mul t compare( st at s, al pha) determines the confidence levels of the intervals in the c matrix and in the figure. The confidence level is \(100^{*}\) ( 1 - al pha) \%. The default value of al pha is 0.05 .
c = mult compare(stats, al pha, ' di spl ayopt ') enables the graph display when ' di spl ayopt' is ' on' (default) and suppresses the display when 'di spl ayopt' is' off'.
c = mul tcompare(stats, al pha, ' di spl ayopt ' , ' ct ype' ) specifies thecritical value to use for the multiple comparison, which can be any of the following.
\begin{tabular}{ll}
\hline ctype & Meaning \\
\hline ' hsd' & \begin{tabular}{l} 
Use Tukey's honestly significant difference criterion. \\
This is the default, and it is based on the Studentized \\
range distribution. It is optimal for balanced one-way \\
ANOVA and similar procedures with equal sample sizes. \\
It has been proven to be conservative for one-way \\
ANOVA with different sample sizes. According to the \\
unproven Tukey-Kramer conjecture, it is also accurate \\
for problems where the quantities being compared are \\
correlated, as in analysis of covariance with unbalanced \\
covariate values.
\end{tabular} \\
\hline ' I sd' & \begin{tabular}{l} 
Use Tukey's least significant difference procedure. This \\
procedure is a simple t-test. It is reasonable if the \\
preliminary test (say, the one-way AN OVA F statistic) \\
shows a significant difference. If it is used \\
unconditionally, it provides no protection against \\
multiple comparisons.
\end{tabular} \\
\hline ' bonf er roni ' & \begin{tabular}{l} 
Use critical values from the t distribution, after a \\
Bonferroni adjustment to compensate for multiple \\
comparisons. This procedure is conservative, but usually \\
less so than the Scheffé procedure.
\end{tabular} \\
\hline ' dunn- si dak' & \begin{tabular}{l} 
Use critical values from the t distribution, after an \\
adjustment for multiple comparisons that was proposed \\
by Dunn and proved accurate by Šidák. This procedure is \\
similar to, but less conservative than, the Bonferroni \\
procedure.
\end{tabular} \\
\hline ' schef fe' & \begin{tabular}{l} 
Use critical values from Scheffé's S procedure, derived \\
from the F distribution. This procedure provides a \\
simultaneous confidence level for comparisons of all \\
linear combinations of the means, and it is conservative \\
for comparisons of simple differences of pairs.
\end{tabular} \\
\hline
\end{tabular}
c = mult compare( st at s, al pha, ' di spl ayopt' ', ctype', ' estimate' ) specifies the estimate to be compared. The allowable values of estimate depend on the function that was the source of the st at s structure, according to the fol lowing table.
\begin{tabular}{ll}
\hline Source & Allowable Values of Estimate \\
\hline ' anoval' & I gnored. Always compare the group means. \\
\hline ' anova2' & \begin{tabular}{l} 
Either ' col um' (the default) or ' row to compare \\
column or row means.
\end{tabular} \\
\hline ' anovan' & \begin{tabular}{l} 
Ignored. Always compare the population marginal \\
means as specified by the di margument.
\end{tabular} \\
\hline ' aoct ool ' & \begin{tabular}{l} 
Either ' sl ope' , ' i nt er cept ' , or ' pmm to compare \\
slopes, intercepts, or population marginal means. If \\
the analysis of covariance model did not include \\
separate slopes, then ' sl ope' is not allowed. If it did \\
not include separate intercepts, then no comparisons \\
are possible.
\end{tabular} \\
\hline ' fri edman' & \begin{tabular}{l} 
Ignored. Always compare average column ranks.
\end{tabular} \\
\hline ' kruskal wal I i s' & Ignored. Always compare average group ranks. \\
\hline
\end{tabular}
c = mult compare( stats, al pha, ' di spl ayopt ', ' ctype', ' estimat e' di m) specifies the population marginal means to be compared. This argument is used only if the input st at s structure was created by the anovan function. For n-way ANOVA with n factors, you can specify dim as a scalar or a vector of integers between 1 and \(n\). The default value is 1 .

For example, if di \(m=1\), the estimates that are compared are the means for each value of the first grouping variable, adjusted by removing effects of the other grouping variables as if the design were balanced. If di \(m=\left[\begin{array}{ll}1 & 3\end{array}\right]\), population marginal means are computed for each combination of thefirst and third grouping variables, removing effects of the second grouping variable. If you fit a singular model, some cell means may not be estimable and any population marginal means that depend on those cell means will have the value NaN .

Population marginal means are described by Milliken and Johnson (1992) and by Searle, Speed, and Milliken (1980). The idea behind population marginal means is to remove any effect of an unbalanced design by fixing the values of the factors specified by di \(m\) and averaging out the effects of other factors as if each factor combination occurred the same number of times. The definition of population marginal means does not depend on the number of observations at each factor combination. For designed experiments where the number of observations at each factor combination has no meaning, population marginal means can be easier to interpret than simple means ignoring other factors. For surveys and other studies where the number of observations at each combination does have meaning, population marginal means may be harder to interpret.
[ \(\mathrm{c}, \mathrm{m}]=\) multcompare(...) returns an additional matrix \(m\) The first column of mcontains the estimated values of the means (or whatever statistics are being compared) for each group, and the second column contains their standard errors.
[ \(c, m h]=\) mul t compare(...) returns a handle \(h\) to the comparison graph. Note that the title of this graph contains instructions for interacting with the graph, and the \(x\)-axis label contains information about which means are significantly different from the selected mean. If you plan to use this graph for presentation, you may want to omit the title and the x-axis label. Y ou can removethem using interactive features of the graph window, or you can usethe following commands.
```

title('')
xl abel('')

```

\section*{Example}

Let's revisit the anoval example testing the material strength in structural beams. From the anoval output we found significant evidence that the three types of beams are not equival ent in strength. N ow we can determine where those differences lie. First we create the data arrays and we perform one-way ANOVA.
```

strength = [82 86 79 83 84 85 86 87 74 82 78 75 76 77 79 ...
79 77 78 82 79];
alloy = {'st','st','st','st','st','st','st','st',...
' al 1',' al 1',' al 1',' al 1',' al 1',' al 1',...
' al 2', ' al 2', ' al 2', ' al 2' ,' al 2' , ' al 2' };

```
[ \(\mathrm{p}, \mathrm{a}, \mathrm{s}\) ] = anova1(strength, alloy);
Among the outputs is a structure that we can use as input to mul t compare.
```

mul t compare(s)
ans =

1.0000	2.0000	3.6064	7.0000	10.3936
1.0000	3.0000	1.6064	5.0000	8.3936
2.0000	3.0000	-5.6280	-2.0000	1.6280

```


The third row of the output matrix shows that the differences in strength between the two alloys is not significant. A 95\% confidence interval for the difference is \([-5.6,1.6]\), so we cannot reject the hypothesis that the true difference is zero.

The first two rows show that both comparisons involving the first group (steel) have confidence intervals that do not include zero. In other words, those differences are significant. The graph shows the same information.

See Also anova1, anova2, anovan, aoct ool , fri edman, kr uskal wal lis

\section*{multcompare}

\author{
References Hochberg, Y., and A. C. Tamhane, Multiple Comparison Procedures, 1987, Wiley. \\ Milliken, G. A., and D. E.J ohnson, Analysis of Messy Data, Volume 1: Designed Experiments, 1992, Chapman \& Hall. \\ Searle, S. R., F. M. Speed, and G. A. Milliken, "Population marginal means in the linear model: an alternative to least squares means," American Statistician, 1980, pp. 216-221.
}

Purpose

\section*{Syntax}

Description

Random matrices from the multivariate normal distribution.
\(r=m p n r n d(m u\), SI GMA, cases)
\(r=m v n r n d(m u\), SI GMA, cases) returns a matrix of random numbers chosen from the multivariate normal distribution with mean vector mu and covariance matrix SI GMA. cases specifies the number of rows in r.

SI GMA is a symmetric positive definite matrix with size equal to the length of \(m\).

\section*{Example}
```

mu = [2 3];
sigma = [1 1.5; 1.5 3];
r = mvnr nd(mu, si gmm, 100);
pl ot(r(:, 1),r(:, 2),'+')

```


See Also normnd

\section*{Purpose Random matrices from the multivariatet distribution.}

\section*{Syntax \(\quad r=m\) trnd( C, df, cases)}

Description

\section*{Example}
```

si gmm = [1 0. 8; 0.8 1];
r = mvtrnd(si gma, 3, 100);
pl ot(r(:, 1),r(:, 2),' +')

```


See Also mvnrnd, trnd
\begin{tabular}{|c|c|}
\hline Purpose & Maximum ignoring NaNs. \\
\hline Syntax & \[
\begin{aligned}
& m=\operatorname{nanmax}(a) \\
& {[m, n d x]=\operatorname{nanmax}(a)} \\
& m=\operatorname{nanmax}(a, b)
\end{aligned}
\] \\
\hline Description & \(\mathrm{m}=\) nannmx(a) returns the maximum with NaNs treated as missing. For vectors, nanmax (a) is the largest non-NaN element in a. For matrices, nanmax \((A)\) is a row vector containing the maximum non-NaN element from each column. \\
\hline & \begin{tabular}{l}
[ \(m \mathrm{ndx}\) ] = nanmax (a) also returns the indices of the maximum values in vector ndx. \\
\(m=\operatorname{nannmx}(a, b)\) returns the larger of \(a\) or \(b\), which must match in size.
\end{tabular} \\
\hline \multirow[t]{6}{*}{Example} & \[
\begin{aligned}
& m=\operatorname{magic}(3) ; \\
& \mathrm{m}\left(\left[\begin{array}{lll}
1 & 6 & 8
\end{array}\right)=[\mathrm{NaN} \mathrm{NaN} \mathrm{NaN}]\right. \\
& \mathrm{m}=
\end{aligned}
\] \\
\hline & \[
\begin{array}{rrr}
\mathrm{NaN} & 1 & 6 \\
3 & 5 & \mathrm{NaN} \\
4 & \mathrm{NaN} & 2
\end{array}
\] \\
\hline & \[
\begin{aligned}
& {[n m a x, m \times x i d x]=\operatorname{nanmax}(m)} \\
& n m \not a x=
\end{aligned}
\] \\
\hline & \(4 \quad 5 \quad 6\) \\
\hline & maxi dx = \\
\hline & 312 \\
\hline See Also & nanmi n, nanmean, nanmedi an, nanst d, nansum \\
\hline
\end{tabular}

Purpose Mean ignoring NaNs

\section*{Syntax \\ \[
y=\operatorname{nanmean}(X)
\]}

Description
\(y=\) nanmean \((X)\) is the average computed by treating NaNs as missing values.
For vectors, nanmean \((x)\) is the mean of thenon-NaNelements of \(x\). For matrices, nanmean \((X)\) is a row vector containing the mean of the non-NaN elements in each column.

Example
```

m = magi c(3) ;
m([llll
m}
NaN 1 6
3 NaN
NaN 2
nmean = nanmean(m)
nmean =

```
3. 5000
3. 0000
4. 0000

See Also nanmi n, nanmax, nanmedi an, nanst d, nansum
Purpose Median ignoring NaNs
Syntax \(y=\) nanmedi \(a n(X)\)
Description \(\mathrm{y}=\) nanmedi \(\mathrm{an}(\mathrm{X})\) is the median computed by treating NaNs as missing values.
For vectors, nannedi \(\operatorname{an}(x)\) is the median of the non-NaN elements of \(x\). F ormatrices, nanmedi \(\mathrm{an}(\mathrm{X})\) is a row vector containing the median of the non-NaNelements in each column of \(X\).
Example
\(\mathrm{m}=\) nagi \(\mathrm{c}(4)\);
\(m\left(\left[\begin{array}{lll}1 & 6 & 9\end{array} 1\right]\right.\) ) \(=[\mathrm{NaN} \operatorname{NaN} \operatorname{NaN} \mathrm{NaN}]\)

    \(\mathrm{m}=\)

            \(\begin{array}{llll}\mathrm{NaN} & 2 & \mathrm{NaN} & 13\end{array}\)

\(5 \mathrm{NaN} \quad 10 \quad 8\)

            \(\begin{array}{llll}9 & 7 & \mathrm{NaN} & 12\end{array}\)

            41415

                1

    nmedi an = nanmedi \(a n(m)\)

    nmedi an =
5. 0000
7. 0000
10. 0000
12. 5000
See Also nanmin, nanmax, nanmean, nanst d, nansum
\begin{tabular}{|c|c|}
\hline Purpose & Minimum ignoring NaNs \\
\hline Syntax & \[
\begin{aligned}
& m=\operatorname{nanmin} n(a) \\
& {[m, \operatorname{ndx}=\operatorname{nanm} n(a)} \\
& m=\operatorname{nanmin} n(a, b)
\end{aligned}
\] \\
\hline Description & \(\mathrm{m}=\) nanni \(\mathrm{n}(\mathrm{a})\) is the minimum computed by treating NaNs as missing values. For vectors, nanmin(a) is the smallest non-NaN element in a. For matrices, nanmin \(n(A)\) is a row vector containing the minimum non-NaN element from each column. \\
\hline & \begin{tabular}{l}
[ \(m \mathrm{ndx}\) ] = nanmin(a) also returns the indices of the minimum values in vector ndx. \\
\(\mathrm{m}=\) nanmin \(\mathrm{n}(\mathrm{a}, \mathrm{b})\) returns the smaller of a or b , which must match in size.
\end{tabular} \\
\hline \multirow[t]{6}{*}{Example} & \[
\begin{aligned}
& \mathrm{m}=\text { magi } \mathrm{c}(3) ; \\
& \mathrm{m}\left[\begin{array}{lll}
1 & 6 & 8
\end{array}\right)=[\mathrm{NaN} \mathrm{NaN} \mathrm{NaN}] \\
& \mathrm{m}=
\end{aligned}
\] \\
\hline & \[
\begin{array}{rrr}
\mathrm{NaN} & 1 & 6 \\
3 & 5 & \mathrm{NaN} \\
4 & \mathrm{NaN} & 2
\end{array}
\] \\
\hline & \[
\begin{aligned}
& {[\mathrm{nmin} \mathrm{n}, \mathrm{mi} \mathrm{ni} \mathrm{dx}]=\text { nanmin} n(\mathrm{~m})} \\
& \mathrm{nmin} \mathrm{n}=
\end{aligned}
\] \\
\hline & \(3 \quad 1 \begin{array}{lll}3 & \end{array}\) \\
\hline & mini \(\mathrm{dx}=\) \\
\hline & \(2 \begin{array}{lll}2 & 1\end{array}\) \\
\hline See Also & nanmmx, nanmean, nanmedi an, nanst d, nansum \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Purpose & Standard deviation ignoring NaNs. \\
\hline Syntax & \(y=\operatorname{nanstd}(X)\) \\
\hline \multirow[t]{2}{*}{Description} & \(y=\) nanst \(d(X)\) is the standard deviation computed by treating NaNs as missing values. \\
\hline & For vectors, nanst \(d(x)\) is the standard deviation of the non-NaN elements of \(x\). For matrices, nanst \(d(X)\) is a row vector containing the standard deviations of the non-NaN elements in each column of \(X\). \\
\hline \multirow[t]{8}{*}{Example} & \[
\begin{aligned}
& m=\operatorname{magic} c(3) ; \\
& m\left(\left[\begin{array}{lll}
1 & 6 & 8
\end{array}\right)=[\mathrm{NaN} \mathrm{NaN} \mathrm{NaN}]\right.
\end{aligned}
\] \\
\hline & \(\mathrm{m}=\) \\
\hline & \(\begin{array}{lll}\mathrm{NaN} & 1 & 6\end{array}\) \\
\hline & 35 NaN \\
\hline & 4 NaN 2 \\
\hline & nst d \(=\) nanst \(\mathrm{d}(\mathrm{m})\) \\
\hline & nstd \(=\) \\
\hline & \(\begin{array}{lll}0.7071 & 2.8284 & 2.8284\end{array}\) \\
\hline See Also & nanmmx, nanmi n , nanmean, nanmedi an, nansum \\
\hline
\end{tabular}

\section*{Purpose Sum ignoring NaNs.}

\section*{Syntax \\ \(y=\) nansum \((X)\)}

Description
\(y=\) nansum( \(X\) ) is the sum computed by treating NaNs as missing values.
For vectors, nansun( \(x\) ) is the sum of the non-NaN elements of \(x\). F or matrices, nansum \((X)\) is a row vector containing the sum of the non-NaN elements in each column of \(X\).

Example
```

m = magic(3) ;
m([lll 8]) = [NaN NaN NaN]
m=
NaN 1 6
3 NaN
NaN 2
nsum = nansum(m)
nsum =
7 6 8

```
See Also nanmæx, nanmi n, nanmean, nanmedi an, nanst d

Purpose Negative binomial cumulative distribution function.

\section*{Syntax \\ \(Y=\operatorname{nbi} \operatorname{ncdf}(X, R, P)\)}

Description \(\quad Y=\) nbi \(n c d f(X, R, P)\) computes the negative binomial cdf at each of the values in \(X\) using the corresponding parameters in \(R\) and \(P\). Vector or matrix inputs for \(X, R\), and \(P\) must have the same size, which is also the size of \(Y\). A scalar input for \(\mathrm{X}, \mathrm{R}\), or P is expanded to a constant matrix with the same dimensions as the other inputs.

The negative binomial cdf is
\[
y=F(x \mid r, p)=\sum_{i=0}^{x}\left({ }_{i}^{r+i-1} \rho^{r} q^{i} l_{(0,1, \ldots)}(i)\right.
\]

The motivation for the negative binomial is the case of successive trials, each having a constant probability P of success. What you want to find out is how many extra trials you must do to observe a given number R of successes.

\section*{Example}
```

x = (0: 15);
p = nbi ncdf(x, 3, 0.5);
st ai rs(x, p)

```


See Also cdf, nbi ni nv, nbi npdf, nbi nr nd, nbi nst at
Purpose Inverse of the negative binomial cumulative distribution function (cdf).
Syntax \(X=n b i n i n v(Y, R, P)\)
Description
Example
See Also i cdf , nbi ncdf, nbi npdf, nbi nr nd, nbi nst at

Purpose \(\quad\) Negative binomial probability density function.

\section*{Syntax \\ \(Y=\operatorname{nbi} \operatorname{npdf}(\mathrm{X}, \mathrm{R}, \mathrm{P})\)}
\(Y=\) nbi \(n p d f(X, R, P)\) returns the negative binomial pdf at each of the values in X using the corresponding parameters in \(R\) and \(P\). Vector or matrix inputs for \(X, R\), and \(P\) must have the same size, which is also the size of \(Y\). A scalar input for \(\mathrm{X}, \mathrm{R}\), or P is expanded to a constant matrix with the same dimensions as the other inputs. Note that the density function is zero unless the values in \(X\) are integers.

The negative binomial pdf is
\[
y=f(x \mid r, p)=\left(\begin{array}{c}
r+x-1 \\
x
\end{array} p^{r} q^{x} I_{(0,1, \ldots)}(x)\right.
\]

The negative binomial pdf models consecutive trials, each having a constant probability \(P\) of success. The parameter \(R\) is the number of successes required before stopping.

\section*{Example}
```

x = (0: 10);
y = nbi npdf (x, 3, 0.5);
pl ot (x, y, ' +')
set(gca, ' Xl i m, [-0. 5, 10.5])

```


See Also nbi ncdf, nbi ni nv, nbi nr nd, nbi nst at, pdf
Purpose Random matrices from a negative binomial distribution.
Syntax
Description

Example

RND \(=n b i \operatorname{nr} n d(R, P)\)
RND \(=n b i \operatorname{nr} n d(R, P, m)\)
\(R N D=n b i n r n d(R, P, m n)\)
\(R N D=n b i \operatorname{nr} n d(R, P)\) is a matrix of random numbers chosen from a negative binomial distribution with parameters \(R\) and \(P\). Vector or matrix inputs for \(R\) and \(P\) must have the same size, which is also the size of RND. A scalar input for \(R\) or \(P\) is expanded to a constant matrix with the same dimensions as the other input.

RND = nbi \(n r n d(R, P, m\) generates random numbers with parameters \(R\) and \(P\), where mis a 1-by-2 vector that contains the row and column dimensions of RND.

RND \(=n b i \operatorname{nr} n d(R, P, m n)\) generates random numbers with parameters \(R\) and \(P\), where scalars mand \(n\) are the row and column dimensions of RND.

The negative binomial distribution models consecutive trials, each having a constant probability P of success. The parameter R is the number of successes required before stopping.

Suppose you want to simulate a process that has a defect probability of 0.01 . How many units might Quality Assurance inspect before finding three defective items?
```

r = nbi nrnd(3,0.01, 1, 6) + 3
r =
496

```

\footnotetext{
See Also
nbi ncdf, nbi ni nv, nbi npdf, nbi nst at
}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Purpose & \multicolumn{5}{|l|}{Mean and variance of the negative binomial distribution.} \\
\hline Syntax & \multicolumn{5}{|l|}{[ \(\mathrm{M}, \mathrm{V}\) ] \(=\) nbinstat \((\mathrm{R}, \mathrm{P}\) )} \\
\hline Description & \multicolumn{5}{|l|}{[ \(M \mathrm{~V}\) ] = nbi nst at ( \(R, P\) ) returns the mean and variance of the negative binomial distribution with parameters \(R\) and \(P\). Vector or matrix inputs for \(R\) and \(P\) must have the same size, which is also the size of Mand \(V\). A scalar input for \(R\) or \(P\) is expanded to a constant matrix with the same dimensions as the other input.} \\
\hline & \multicolumn{5}{|l|}{Themean of thenegative binomial distribution with parameters \(r\) and \(p\) is \(r q / p\), where \(q=1-p\). The variance is \(r q / p^{2}\).} \\
\hline \multirow[t]{13}{*}{Example} & \multicolumn{5}{|l|}{\[
\begin{aligned}
& p=0.1: 0.2: 0.9 ; \\
& r=1: 5 ; \\
& [R, P]=\text { neshgrid( } r, p) ; \\
& {[M V]=\text { nbi nstat }(R, P)}
\end{aligned}
\]} \\
\hline & \multicolumn{5}{|l|}{\(M=\)} \\
\hline & 9. 0000 & 18. 0000 & 27. 0000 & 36. 0000 & 45. 0000 \\
\hline & 2. 3333 & 4. 6667 & 7. 0000 & 9. 3333 & 11. 6667 \\
\hline & 1. 0000 & 2. 0000 & 3. 0000 & 4. 0000 & 5. 0000 \\
\hline & 0. 4286 & 0. 8571 & 1. 2857 & 1. 7143 & 2. 1429 \\
\hline & 0. 1111 & 0. 2222 & 0. 3333 & 0. 4444 & 0. 5556 \\
\hline & \multicolumn{5}{|l|}{\(\mathrm{V}=\)} \\
\hline & 90.0000 & 180. 0000 & 270. 0000 & 360.0000 & 450. 0000 \\
\hline & 7. 7778 & 15. 5556 & 23. 3333 & 31.1111 & 38. 8889 \\
\hline & 2. 0000 & 4. 0000 & 6. 0000 & 8. 0000 & 10. 0000 \\
\hline & 0. 6122 & 1. 2245 & 1. 8367 & 2. 4490 & 3. 0612 \\
\hline & 0. 1235 & 0. 2469 & 0. 3704 & 0. 4938 & 0. 6173 \\
\hline
\end{tabular}

See Also nbi ncdf, nbi ni nv, nbi npdf, nbi nr nd

\section*{Purpose Noncentral F cumulative distribution function (cdf).}

\section*{Syntax \(\quad P=\operatorname{ncfcdf}(X, N U 1, N U 2\), DELTA \()\)}

Description

Example

P = ncf cdf ( \(X\), NU1, NU2, DELTA) computes the noncentral \(F\) cdf at each of the values in X using the corresponding numerator degrees of freedom in NU1, denominator degrees of freedom in NU2, and positive noncentrality parameters in DELTA. Vector or matrix inputs for X, NU1, NU2, and DELTA must have the same size, which is al so the size of P. A scalar input for X, NU1, NU2, or DELTA is expanded to a constant matrix with the same dimensions as the other inputs.
The noncentral F cdf is
\[
\left.F\left(x \mid v_{1}, v_{2}, \delta\right)=\sum_{j=0}^{\infty} \frac{\left(\frac{1}{2} \delta\right)^{j}}{j!} e^{-\frac{\delta}{2}}\left|\frac{v_{1} \cdot x}{\left(v_{2}+v_{1} \cdot x\right.}\right| \frac{v_{1}}{2}+j, \frac{v_{2}}{2}\right)
\]
where \(\mathrm{I}(\mathrm{x} \mid \mathrm{a}, \mathrm{b})\) is the incomplete beta function with parameters a and b .
Compare the noncentral F cdf with \(\delta=10\) to the F cdf with the same number of numerator and denominator degrees of freedom ( 5 and 20 respectively).
```

x = (0.01: 0. 1: 10.01)';
p1 = ncfcdf (x,5,20,10);
p = fcdf(x,5,20);
pl ot(x, p,'--',x, pl,' -')

```


\section*{References \\ J ohnson, N., and S. K otz, Distributions in Statistics: Continuous U nivariate Distributions-2, J ohn Wiley and Sons, 1970. pp. 189-200.}

See Also cdf, ncf pdf, ncfinv, ncfrnd, ncf stat
\begin{tabular}{|c|c|}
\hline Purpose & Inverse of the noncentral F cumulative distribution function (cdf). \\
\hline Syntax & \(\mathrm{X}=\mathrm{ncfin} \mathrm{nv}(\mathrm{P}, \mathrm{NU1}, \mathrm{NU2}\), DELTA) \\
\hline Description & \(X=n c f i n v(P, N U 1, N U 2, D E L T A)\) returns the inverse of the noncentral \(F\) cdf with numerator degrees of freedom NU1, denominator degrees of freedom NU2, and positive noncentrality parameter DELTA for the corresponding probabilities in P. Vector or matrix inputs for P, NU1, NU2, and DELTA must have the same size, which is al so the size of \(X\). A scalar input for \(P\), NU1, NU2, or DELTA is expanded to a constant matrix with the same dimensions as the other inputs. \\
\hline \multirow[t]{3}{*}{Example} & One hypothesis test for comparing two sample variances is to take their ratio and compare it to an \(F\) distribution. If the numerator and denominator degrees of freedom are 5 and 20 respectively, then you reject the hypothesis that the first variance is equal to the second variance if their ratio is less than that computed below.
```

critical = finv(0.95,5,20)
critical =
2. }710

``` \\
\hline & Suppose the truth is that the first variance is twice as big as the second variance. How likely is it that you would detect this difference?
```

 prob = 1 - ncfcdf(critical,5, 20, 2)
 prob =
    ``` \\
\hline & 0. 1297 \\
\hline \multirow[t]{2}{*}{References} & Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, Second Edition, J ohn Wiley and Sons, 1993. p. 102-105. \\
\hline & J ohnson, N., and S. K otz, Distributions in Statistics: Conti nuous Uni variate Distributions-2, J ohn Wiley and Sons, 1970. pp. 189-200. \\
\hline See Also & i cdf, ncf cdf, ncf pdf, ncf r nd, ncf st at \\
\hline
\end{tabular}

Purpose Noncentral F probability density function.

\section*{Syntax \(\quad Y=\operatorname{ncf} p d f(X, N U 1, N U 2, D E L T A)\)}

Description \(\quad Y=\operatorname{ncf} p d f(X, N U 1, N U 2, D E L T A)\) computes the noncentral \(F\) pdf at each of the values in X using the corresponding numerator degrees of freedom in NU1, denominator degrees of freedom in NU2, and positive noncentrality parameters in DELTA. Vector or matrix inputs for X, NU1, NU2, and DELTA must havethe same size, which is also the size of Y. A scalar input for P, NU1, NU2, or DELTA is expanded to a constant matrix with the same dimensions as the other inputs.
The \(F\) distribution is a special case of the noncentral \(F\) where \(\delta=0\). As \(\delta\) increases, the distribution flattens like the plot in the example.

\section*{Example}

Compare the noncentral F pdf with \(\delta=10\) to the F pdf with the same number of numerator and denominator degrees of freedom (5 and 20 respectively).
```

x = (0.01:0.1: 10.01)' ;
p1 = ncf pdf (x, 5, 20, 10);
p = fpdf(x,5,20);
pl ot(x, p, '- ' ', x, pl,' - ')

```


J ohnson, N., and S. K otz, Distributions in Statistics: Continuous Univariate Distributions-2, J ohn Wiley and Sons, 1970. pp. 189-200.

See Also ncf cdf, ncfinv, ncfrnd, ncf st at, pdf

Purpose Random matrices from the noncentral F distribution.
Syntax \(\left.\quad \begin{array}{rl}R & =n c f r n d(N U 1, N U 2, ~ D E L T A) \\ R & =n c f r n d(N U 1, N U 2, ~ D E L T A, ~ \\ m\end{array}\right)\)
Description

Example Compute six random numbers from a noncentral F distribution with 10 numerator degrees of freedom, 100 denominator degrees of freedom and a noncentrality parameter, \(\delta\), of 4.0. Compare this to the \(F\) distribution with the same degrees of freedom.
```

r = ncfrnd(10, 100, 4, 1, 6)
r =
2.5995 0.8824 0.8220}<1.4485 1.4415 1.4864
r1 = frnd(10, 100, 1, 6)
r1 =

```
0. 9826
0. 5911
0. 9681
0. 6598
1. 0967
2. 0096

References J ohnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate Distributions-2, J ohn Wiley and Sons, 1970. pp. 189-200.

See Also ncf cdf, ncf i nv, ncf pdf, ncf st at

\section*{Purpose Mean and variance of the noncentral F distribution.}

\section*{Syntax \\ [ M V] = ncfstat( NU1, NU2, DELTA)}

Description \([M \mathrm{~V}]=\mathrm{ncf}\) st at ( NU1, NU2, DELTA) returns the mean and variance of the noncentral F pdf with NU1 and NU2 degrees of freedom and noncentrality parameter DELTA. Vector or matrix inputs for NU1, NU2, and DELTA must have the same size, which is also the size of Mand V. A scalar input for NU1, NU2, or DELTA is expanded to a constant matrix with the same dimensions as the other input.

The mean of the noncentral \(F\) distribution with parameters \(v_{1}, v_{2}\), and \(\delta\) is
\[
\frac{v_{2}\left(\delta+v_{1}\right)}{v_{1}\left(v_{2}-2\right)}
\]
where \(v_{2}>2\).
The variance is
\[
2\left(\frac{v_{2}}{v_{1}}\right)^{2}\left[\frac{\left(\delta+v_{1}\right)^{2}+\left(2 \delta+v_{1}\right)\left(v_{2}-2\right)}{\left(v_{2}-2\right)^{2}\left(v_{2}-4\right)}\right]
\]
where \(v_{2}>4\).

\section*{Example}

References

See Also
\([\mathrm{m} v]=\operatorname{ncf}\) st at \((10,100,4)\)
\(\mathrm{m}=\)
1. 4286
\[
v=
\]
3. 9200

Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, Second Edition, J ohn Wiley and Sons, 1993. p. 73-74.

J ohnson, N., and S. K otz, Distributions in Statistics: Continuous Univariate Distributions-2, J ohn Wiley and Sons, 1970. pp. 189-200.
ncf cdf, ncfinv, ncf pdf, ncfrnd

\section*{Purpose Noncentral T cumulative distribution function.}

\section*{Syntax \(\quad P=\operatorname{nct} \operatorname{cdf}(X, N U, D E L T A)\)}

Description

Example

See Also cdf, nct cdf, nct inv, nct pdf, nct rnd, nct st at
\begin{tabular}{|c|c|}
\hline Purpose & Inverse of the noncentral T cumulative distribution. \\
\hline Syntax & \(X=\operatorname{nctinv}(\mathrm{P}, \mathrm{NU}, \mathrm{DELTA})\) \\
\hline Description & \(\mathrm{X}=\mathrm{ncti} \mathrm{nv}(\mathrm{P}, \mathrm{NU}, \mathrm{DELTA})\) returns the inverse of the noncentral T cdf with NU degrees of freedom and noncentrality parameter DELTA for the corresponding probabilities in P. Vector or matrix inputs for P, NU, and DELTA must have the same size, which is also the size of \(X\). A scalar input for \(P, N U\), or DELTA is expanded to a constant matrix with the same dimensions as the other inputs. \\
\hline Example & \(x=\operatorname{nctinv}\left(\left[\begin{array}{lll}0.1 & 0.2\end{array}\right], 10,1\right)\) \\
\hline & \[
\begin{aligned}
& x= \\
&-0.2914
\end{aligned} 0.1618
\] \\
\hline References & Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, Second Edition, J ohn Wiley and Sons, 1993. p. 147-148. \\
\hline & J ohnson, N., and S. K otz, Distributions in Statistics: Continuous Univariate Distributions-2, J ohn Wiley and Sons, 1970. pp. 201-219. \\
\hline See Also & i cdf, nct cdf, nct pdf, nct r nd, nct st at \\
\hline
\end{tabular}
Purpose Noncentral T probability density function (pdf).

\section*{Syntax \(\quad Y=\operatorname{nct} p d f(X, V, D E L T A)\)}

\section*{Description}

Example

See Also
nct cdf, nctinv, nctrnd, nctst at, pdf
\begin{tabular}{|c|c|}
\hline Purpose & Random matrices from noncentral T distribution. \\
\hline Syntax & \(\mathrm{R}=\mathrm{nctrnd}(\mathrm{V}, \mathrm{DELTA})\) \\
\hline & \(\mathrm{R}=\mathrm{nctr} \mathrm{nd}(\mathrm{V}, \mathrm{DELTA}, \mathrm{m})\) \\
\hline & \(\mathrm{R}=\mathrm{nctr} \mathrm{nd}(\mathrm{V}, \mathrm{DELTA}, \mathrm{m} \mathrm{n}\) ) \\
\hline Description & \(R=n c t r n d(V, D E L T A)\) returns a matrix of random numbers chosen from the noncentral \(T\) distribution with parameters \(V\) and DELTA. Vector or matrix inputs for \(V\) and DELTA must have the same size, which is also the size of \(R\). \(A\) scalar input for \(V\) or DELTA is expanded to a constant matrix with the same dimensions as the other input. \\
\hline & \(R=\operatorname{nctr} \mathrm{nd}(\mathrm{V}\), DELTA, m\()\) returns a matrix of random numbers with parameters \(V\) and DELTA, where mis a 1-by-2 vector that contains the row and column dimensions of R. \\
\hline & \(R=n c t r n d(V, D E L T A, m n)\) generates random numbers with parameters \(V\) and DELTA, where scalars mand \(n\) are the row and column dimensions of R. \\
\hline Example & nctr nd( \(10,1,5,1\) ) \\
\hline & ans \(=\) \\
\hline & 1. 6576 \\
\hline & 1. 0617 \\
\hline & 1. 4491 \\
\hline & 0. 2930 \\
\hline & 3. 6297 \\
\hline References & Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, Second Edition, J ohn Wiley and Sons, 1993. p. 147-148. \\
\hline & J ohnson, N., and S. K otz, Distributions in Statistics: Continuous Univariate Distributions-2, J ohn Wiley and Sons, 1970. pp. 201-219. \\
\hline See Also & nct cdf, nct i nv, nct pdf, nct st at \\
\hline
\end{tabular}

\section*{Purpose Mean and variance for the noncentral \(t\) distribution.}

\section*{Syntax \\ [ M V] = nctstat(NU, DELTA)}

\section*{Description \(\quad[M \mathrm{~V}]=\) nct st at ( NU, DELTA) returns the mean and variance of the} noncentral \(t\) pdf with NU degrees of freedom and noncentrality parameter DELTA. Vector or matrix inputs for NUand DELTA must have the samesize, which is also the size of Mand V. A scalar input for NU or DELTA is expanded to a constant matrix with the same dimensions as the other input.

The mean of the noncentral \(t\) distribution with parameters \(v\) and \(\delta\) is
\[
\frac{\delta(v / 2)^{1 / 2} \Gamma((v-1) / 2)}{\Gamma(v / 2)}
\]
where \(v>1\).
The variance is
\[
\frac{v}{(v-2)}\left(1+\delta^{2}\right)-\frac{v}{2} \delta^{2}\left[\frac{\Gamma((v-1) / 2)}{\Gamma(v / 2)}\right]^{2}
\]
where \(v>2\).

\section*{Example}

References Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, Second Edition, J ohn Wiley and Sons, 1993. p. 147-148.

J ohnson, N., and S. K otz, Distributions in Statistics: Continuous U ni variate Distributions-2, J ohn Wiley and Sons, 1970. pp. 201-219.

See Also nct cdf, nct i nv, nct pdf, nct rnd

Purpose \(\quad\) Noncentral chi-square cumulative distribution function (cdf).

\section*{Syntax \\ \(\mathrm{P}=\mathrm{ncx} 2 \mathrm{cdf}(\mathrm{X}, \mathrm{V}, \mathrm{DELTA})\)}

\section*{Description \\ \(P=n c x 2 c d f(X, V, D E L T A)\) computes the noncentral chi-square cdf at each of} the values in \(X\) using the corresponding degrees of freedom in \(V\) and positive noncentrality parameters in DELTA. Vector or matrix inputs for \(\mathrm{X}, \mathrm{V}\), and DELTA must have the same size, which is also the size of P. A scalar input for X, V, or DELTA is expanded to a constant matrix with the same dimensions as the other inputs.

Some texts refer to this distribution as the generalized Rayleigh, Rayleigh-Rice, or Rice distribution.

The noncentral chi-square cdf is
\[
F(x \mid v, \delta)=\sum_{j=0}^{\infty} \frac{\left(\frac{1}{2} \delta\right)^{j}}{j!} e^{-\frac{\delta}{2}} \operatorname{Pr}\left[\chi_{v+2 j}^{2} \leq x\right]
\]

\section*{Example}


\title{
References J ohnson, N., and S. K otz, Distributions in Statistics: Continuous Univariate Distributions-2, J ohn Wiley and Sons, 1970. pp. 130-148.
}

See Also cdf, ncx2i nv, ncx2pdf,ncx2rnd, ncx2st at
\begin{tabular}{|c|c|}
\hline Purpose & Inverse of the noncentral chi-square cdf. \\
\hline Syntax & \(\mathrm{X}=\mathrm{ncx} 2 \mathrm{inv}(\mathrm{P}, \mathrm{V}, \mathrm{DELTA})\) \\
\hline Description & \(X=n c x 2 i \operatorname{nv}(P, V, D E L T A)\) returns the inverse of the noncentral chi-square cdf with parameters \(V\) and DELTA at the corresponding probabilities in \(P\). Vector or matrix inputs for \(P, V\), and DELTA must have the samesize, which is alsothe size of \(X\). A scalar input for \(P, V\), or DELTA is expanded to a constant matrix with the same dimensions as the other inputs. \\
\hline Algorithm & ncx2i nv uses Newton's method to converge to the solution. \\
\hline \multirow[t]{3}{*}{Example} & \(n \mathrm{ncx2i} \mathrm{nv}\left(\left[\begin{array}{llll}0.01 & 0.05 & 0.1], 4,2)\end{array}\right.\right.\) \\
\hline & ans \(=\) \\
\hline & 0. 4858 1. 1498 1. 7066 \\
\hline \multirow[t]{2}{*}{References} & Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, Second Edition, J ohn Wiley and Sons, 1993. p. 50-52. \\
\hline & J ohnson, N., and S. K otz, Distributions in Statistics: Continuous Univariate Distributions-2, J ohn Wiley and Sons, 1970. pp. 130-148. \\
\hline See Also & i cdf, ncx2cdf, ncx2pdf, ncx2rnd, ncx2stat \\
\hline
\end{tabular}

\section*{ncx 2pdf}

Purpose Noncentral chi-square probability density function (pdf).

\section*{Syntax \(\quad Y=n c x 2 p d f(X, V, D E L T A)\)}

Description \(\quad Y=n c x 2 p d f(X, V, D E L T A)\) computes the noncentral chi-square pdf at each of the values in \(X\) using the corresponding degrees of freedom in \(V\) and positive noncentrality parameters in DELTA. Vector or matrix inputs for \(\mathrm{X}, \mathrm{V}\), and DELTA must have the same size, which is also the size of Y . A scalar input for \(\mathrm{X}, \mathrm{V}\), or DELTA is expanded to a constant matrix with the same dimensions as the other inputs.

Some texts refer to this distribution as the generalized Rayleigh, Rayleigh-Rice, or Rice distribution.

Ex ample As the noncentrality parameter \(\delta\) increases, the distribution flattens as shown in the plot.
```

x = (0: 0. 1: 10)';
p1 = ncx2pdf (x,4, 2);
p = chi 2pdf (x,4);
pl ot(x, p,'--',x, pl,' - ')

```

References

See Also ncx2cdf,ncx2inv, ncx2rnd, ncx2stat, pdf
\begin{tabular}{|c|c|}
\hline Purpose & Random matrices from the noncentral chi-square distribution. \\
\hline Syntax & \(\mathrm{R}=\mathrm{ncx} 2 \mathrm{rnd}(\mathrm{V}, \mathrm{DELTA})\) \\
\hline & \(\mathrm{R}=\mathrm{ncx} 2 \mathrm{rnd}(\mathrm{V}, \mathrm{DELTA}, \mathrm{m})\) \\
\hline & \(\mathrm{R}=\mathrm{nc} \times 2 \mathrm{r} \mathrm{nd}(\mathrm{V}, \mathrm{DELTA}, \mathrm{m} \mathrm{n}\) ) \\
\hline Description & \(R=n c x 2 r n d(V\), DELTA) returns a matrix of random numbers chosen from the non-central chi-square distribution with parameters V and DELTA. Vector or matrix inputs for \(V\) and DELTA must have the same size, which is also the size of R. A scalar input for \(V\) or DELTA is expanded to a constant matrix with the same dimensions as the other input. \\
\hline & \(R=n c x 2 r n d(V, D E L T A, m)\) returns a matrix of random numbers with parameters \(V\) and DELTA, where mis a 1-by-2 vector that contains the row and column dimensions of \(R\). \\
\hline & \(R=n c \times 2 r n d(V\), DELTA, \(m n\) ) generates random numbers with parameters \(V\) and DELTA, where scalars mand \(n\) are the row and column dimensions of \(R\). \\
\hline Example & \(n c x 2 r n d(4,2,6,3)\) \\
\hline & ans \(=\) \\
\hline & 6. 8552 5. 9650 11. 2961 \\
\hline & 5. 2631 4. 2640 5. 9495 \\
\hline & \(\begin{array}{lll}\text { 9. } 1939 & 6.7162 & 3.8315\end{array}\) \\
\hline & \(\begin{array}{lll}10.3100 & \text { 4. } 4828 & \text { 7. } 1653\end{array}\) \\
\hline & 2. 1142 1.9826 4. 6400 \\
\hline & \(\begin{array}{lll}\text { 3. } 8852 & 5.3999 & 0.9282\end{array}\) \\
\hline References & Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, Second Edition, J ohn Wiley and Sons, 1993. p. 50-52. \\
\hline & J ohnson, N., and S. K otz, Distributions in Statistics: Continuous Univariate Distributions-2, J ohn Wiley and Sons, 1970. pp. 130-148. \\
\hline See Also & \(n \mathrm{ncx} 2 \mathrm{cdf}, \mathrm{ncx} 2 \mathrm{i} \mathrm{nv}, \mathrm{ncx} 2 \mathrm{pdf}\), ncx2stat \\
\hline
\end{tabular}

Purpose Mean and variance for the noncentral chi-square distribution.

\section*{Syntax \\ [ M V] = ncx2stat (NU, DELTA)}

Description

Example

References

See Also

Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, Second Edition, J ohn Wiley and Sons, 1993. p. 50-52.

J ohnson, N., and S. K otz, Distributions in Statistics: Continuous Univariate Distributions-2, J ohn Wiley and Sons, 1970. pp. 130-148.
\(n c x 2 c d f, n c x 2 i n v, n c x 2 p d f, n c x 2 r n d\)
Purpose Nonlinear least-squares data fitting by the Gauss-Newton method.
Syntax [bet \(\mathrm{a}, \mathrm{r}, \mathrm{J}\) ] = nlinfit(X, y, FUN, bet aO\()\)
Description bet a \(=\mathrm{nlinfit}(\mathrm{X}, \mathrm{y}, \mathrm{FUN}\), bet a 0\()\) returns the coefficients of the nonlinearfunction described in FUN. FUN can be a function handle specified using @ aninline function, or a quoted text string containing the name of a function.
The function FUN has the form \(\hat{y}=f(\beta, X)\). It returns the predicted values of \(y\) given initial parameter estimates \(\beta\) and the independent variable \(X\).
The matrix \(X\) has one column per independent variable. The response, \(y\), is a column vector with the same number of rows as \(X\).
[ bet \(\mathrm{a}, \mathrm{r}, \mathrm{J}\) ] = nl i nfit(X, y, FUN, bet a0) returns the fitted coefficients, bet a, the residuals, \(r\), and the J acobian, J, for use with nl i nt ool to produce error estimates on predictions.
```

Example I oad reaction
betafit = nlinfit(reactants,rate, chougen, beta)
betafit =

```
    1. 2526
    0. 0628
    0. 0400
    0. 1124
    1. 1914
See Also ..... nl i nt ool

Purpose Confidence intervals on estimates of parameters in nonlinear models.
Syntax \(\mathrm{ci}=\mathrm{nl} \operatorname{parci}(\) bet \(\mathrm{a}, \mathrm{r}, \mathrm{J})\)
Description nl par ci (bet a, r, J) returns the 95\% confidence interval ci on the nonlinear least squares parameter estimates bet a, given the residuals \(r\) and the J acobian matrix J at the solution. The confidence interval calculation is valid for systems where the number of rows of J exceeds the length of bet a.
nl parci uses the outputs of nl i nf it for its inputs.
Example Continuing the example from nl inf it :
```

I oad reacti on
[beta, resids,J] = nl infit(reactants,rate,' hougen', bet a);
ci = nl parci(beta, resids,j)
ci =

```
        - 1. \(0798 \quad\) 3. 3445
        - \(0.0524 \quad 0.1689\)
        -0.0437 0. 1145
        - \(0.0891 \quad 0.2941\)
        -1. 1719 3. 7321
    See Also nl infit, nl intool, nl predci

Purpose Confidence intervals on predictions of nonlinear models.

\author{
Syntax \\ Description
}

Example
ypred = nl predci (FUN, i nput s, beta, r, J)
[ypred, delta] = nl predci (FUN, i nputs, bet a, r, J)

ypr ed \(=\mathrm{nl}\) predci (FUN, input s, bet \(\mathrm{a}, \mathrm{r}, \mathrm{J}\) ) returns the predicted responses, ypr ed, given the fitted parameters bet a, residuals \(r\), and the J acobian matrix \(J\). i nputs is a matrix of values of the independent variables in the nonlinear function.
[ ypred, del ta] = nl predci (FUN, i nputs, bet a, r, J) al so returns the half-width, del ta, of confidence intervals for the nonlinear least squares predictions. The confidence interval calculation is valid for systems where the length of \(r\) exceeds the length of bet a and \(J\) is of full column rank. The interval [ ypred- del ta, ypr ed+del ta] is a \(95 \%\) non-simultaneous confidence interval for the true value of the function at the specified input values.
ypred \(=\mathrm{nl}\) predci (FUN, i nputs, bet \(\mathrm{a}, \mathrm{r}, \mathrm{J}\), al pha, ' si mopt', ' predopt' \()\) controls the type of confidence intervals. The confidence level is 100(1-al pha) \%. ' si mopt ' can be' on' for simultaneous intervals or ' of f' (the default) for non-simultaneous intervals. ' predopt ' can be ' curve' (the default) for confidence intervals for the function value at the inputs, or ' obser vation' for confidence intervals for a new response value.
nl predci uses the outputs of nl infit for its inputs.
Continuing the example from nl i nf it , we can determine the predicted function value at [ 10030080 ] and the half-width of a confidence interval for it.
```

I oad reacti on

```
[ beta, resids, J] = nlinfit(reactants, rate, ©hougen, bet a);
[ypred, del ta] = nl predci ( @ougen, [ 100300 80], bet a, resi ds, J)
ypred =
    13
delta =
1. 4277

\footnotetext{
See Also
nlinfit, nlintool, nl parci
}

Purpose Normal cumulative distribution function (cdf).

\section*{Syntax \(\quad P=\operatorname{nor} \operatorname{nddf}(X, M, S I G M A)\)}

\section*{Description}

\section*{Examples}

See Also cdf, normfit, norminv, normpdf, normpl ot, normnd, normspec, normst at
\begin{tabular}{|c|c|}
\hline Purpose & Parameter estimates and confidence intervals for normal data. \\
\hline Syntax & \(\begin{aligned} {[\text { muhat, si gmahat, muci, si gmaci ] }} & =\text { nor nfit }(X) \\ {[\text { muhat, si gmahat, muci, si gmaci] }} & =\text { nor nfit }(X, \text { al pha })\end{aligned}\) \\
\hline Description & \begin{tabular}{l}
[ muhat, si gnahat, nuci, si gnaci ] = nor mit (X) returns estimates muhat and si gnahat of the normal distribution parameters \(\mu\) and \(\sigma\), given the matrix of data X. muci and si gmaci are \(95 \%\) confidence intervals and have two rows and as many columns as matrix \(X\). The top row is the lower bound of the confidence interval and the bottom row is the upper bound. \\
[ muhat, si gmahat, muci, si gnaci ] = normit( \(X\), al pha) gives estimates and 100( 1 - al pha) \% confidence intervals. For example, al pha \(=0.01\) gives \(99 \%\) confidence intervals.
\end{tabular} \\
\hline Example & In this examplethe data is a two-column random normal matrix. Both columns have \(\mu=10\) and \(\sigma=2\). Note that the confidence intervals below contain the "true values."
```

 r = normrnd(10, 2, 100, 2);
 [mu, si gma, muci,si gmaci] = normfit(r)
 mu =
 10.1455 10.0527
    ``` \\
\hline & \[
\begin{array}{ll}
\text { sigma }= \\
1.9072 & \text { 2. } 1256
\end{array}
\] \\
\hline & \[
\begin{array}{rr}
\text { muci }= & \\
9.7652 & 9.6288 \\
10.5258 & 10.4766
\end{array}
\] \\
\hline & \[
\begin{array}{rr}
\text { si gnaci }= & \\
1.6745 & 1.8663 \\
2.2155 & 2.4693
\end{array}
\] \\
\hline See Also & nor medf , nor mi nv, nor mpdf , nor mpl ot, nor mnd, nor mspec, nor mst at , bet af it, bi nofit, expfit, ganfit, poissfit, unifit, wei bfit \\
\hline
\end{tabular}

Purpose Inverse of the normal cumulative distribution function (cdf).

\section*{Syntax \(\quad X=\operatorname{normin} n(P, M, S I\) GMA \()\)}

\section*{Description}

\section*{Examples}

See Also

Find an interval that contains 95\% of the values from a standard normal distribution.
```

x = normm nv([0.025 0. 975], 0, 1)
x =
-1.9600 1.9600

```

Note the interval x is not the only such interval, but it is the shortest.
```

xl = norminv([0.01 0. 96],0,1)
xI =
-2.3263 1.7507

```

The interval xl also contains \(95 \%\) of the probability, but it is longer than x .
icdf, nornfit, nornfit, normpdf, normpl ot, normnd, normspec, normst at

\section*{Purpose Normal probability density function (pdf).}

\section*{Syntax \(\quad Y=\operatorname{nor} m p d f(X, M J, ~ S I ~ G M A) ~\)}

\section*{Description}

\section*{Examples}
```

mu = [0:0.1:2];
[y i] = max(normpdf(1.5,mu,1));
MLE = mu(i)
MLE =

```
1. 5000

See Also nornfit, normit, norminv, normpl ot, normnd, normspec, normst at, pdf

\section*{Purpose \(\quad\) Normal probability plot for graphical normality testing.}
\begin{tabular}{ll} 
Syntax & \(\operatorname{nor} \operatorname{mpl} \operatorname{ot}(X)\) \\
& \(h=\operatorname{normpl} \operatorname{ot}(X)\)
\end{tabular}

Description nor mpl ot \((X)\) displays a normal probability plot of the data in \(X\). For matrix \(X\), nor mpl ot displays a line for each column of \(X\).

The plot has the sample data displayed with the plot symbol ' + ' .
Superimposed on the plot is a line joining the first and third quartiles of each column of \(X\) (a robust linear fit of the sample order statistics.) This line is extrapolated out to the ends of the sample to help evaluate the linearity of the data.

If the data does come from a normal distribution, the plot will appear linear. Other probability density functions will introduce curvature in the plot.
\(h=\) nor mpl ot \((X)\) returns a handle to the plotted lines.

\section*{Examples}

Generate a normal sample and a normal probability plot of the data.
\[
\begin{aligned}
& x=\operatorname{nor} m \mathrm{nd}(0,1,50,1) ; \\
& h=\operatorname{nor} \operatorname{mpl} \text { ot }(x) ;
\end{aligned}
\]


The plot is linear, indicating that you can model the sample by a normal distribution.

See Also cdf pl ot, hi st, normit, normfit, norminv, normpdf, normand, normspec, nornst at
\begin{tabular}{|c|c|}
\hline Purpose & Random numbers from the normal distribution. \\
\hline Syntax & \(\mathrm{R}=\operatorname{normmd}\) ( MU, SI GMA) \\
\hline & \(\mathrm{R}=\operatorname{normmd}\) ( M, SI GMA, m) \\
\hline & \(R=\operatorname{normmd}(M, S I G M A, m n)\) \\
\hline Description & \(R=\) nor mnd(MU, SI GMA) generates normal random numbers with mean MJ and standard deviation SI GMA. Vector or matrix inputs for MJ and SI GMA must have the same size, which is also the size of R. A scalar input for MJ or SI GMA expanded to a constant matrix with the same dimensions as the other input \\
\hline & \(R=\) nor mind(M, SI GMA, \(n\) ) generates normal random numbers with parameters MJ and SI GMA, where mis a 1-by-2 vector that contains the row and column dimensions of \(R\). \\
\hline & \(R=\) nor mmd(MU, SI GMA, \(m\) n) generates normal random numbers with parameters MJ and SI GMA, where scalars mand \(n\) are the row and column dimensions of \(R\). \\
\hline Examples & n 1 l normmd( \(1: 6,1 . /(1: 6)\) ) \\
\hline & \[
\begin{array}{rlrrrr}
\mathrm{n} 1= & & & & \\
2.1650 & 2.3134 & 3.0250 & 4.0879 & 4.8607 & 6.2827
\end{array}
\] \\
\hline & n2 \(=\) normmd( \(0,1,\left[\begin{array}{ll}15\end{array}\right)\) \\
\hline & \[
\mathrm{n} 2=
\] \\
\hline & n3 \(=\) normmd([ \(1123 ; 456], 0.1,2,3)\) \\
\hline & n3 = \\
\hline & 0. 9299 1.9361 2.9640 \\
\hline & 4. \(1246 \quad 5.0577 \quad 5.9864\) \\
\hline See Also & nornfit, nornfit, norminv, nor mpdf, normpl ot, normspec, nornst at \\
\hline
\end{tabular}

\section*{Purpose}

\section*{Syntax}

Description

Example

Plot normal density between specification limits.
\(\mathrm{p}=\) nor mspec (specs, mu, si gma)
[ \(\mathrm{p}, \mathrm{h}]=\) nornspec(specs, mu, si gnm)
\(\mathrm{p}=\) normspec (specs, mu, si gma) plots the normal density between a lower and upper limit defined by the two elements of the vector specs, where mind si gmæ are the parameters of the plotted normal distribution.
[ \(\mathrm{p}, \mathrm{h}\) ] = nornspec(specs, mu, si gnm) returns the probability p of a sample falling between the lower and upper limits. h is a handle to the line objects.

If specs(1) is -I nf, there is no lower limit, and similarly if specs(2) \(=1 \mathrm{nf}\), there is no upper limit.

Suppose a cereal manufacturer produces 10 ounce boxes of corn flakes. Variability in the process of filling each box with flakes causes a 1.25 ounce standard deviation in the true weight of the cereal in each box. The average box of cereal has 11.5 ounces of flakes. What percentage of boxes will haveless than 10 ounces?
normspec([10 Inf ], 11. 5, 1.25)

Probability Between Limits is 0.8849

capapl ot, di sttool, hi stfit, normfit, normfit, norminv, nor mpdf, nor mpl ot, normad, nornst at

Purpose Mean and variance for the normal distribution.

\section*{Syntax}

Description
[ MV ] = normstat ( \(\mathrm{MJ}, \mathrm{SI} \mathrm{GMA}\) )
[ \(M \mathrm{~V}\) ] = nornst at ( \(\mathrm{M}, \mathrm{SI} \mathrm{GM}\) ) returns the mean and variance for the normal distribution with parameters MJ and SI GMA. Vector or matrix inputs for MJ and SI GMA must have the same size, which is also the size of Mand V. A scalar input for MJ or SI GMA is expanded to a constant matrix with the same dimensions as the other input.

The mean of the normal distribution with parameters \(\mu\) and \(\sigma\) is \(\mu\), and the variance is \(\sigma^{2}\).

\section*{Examples}
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 \\
\hline 2 & 4 & 6 & 8 & 10 \\
\hline 3 & 6 & 9 & 12 & 15 \\
\hline 4 & 8 & 12 & 16 & 20 \\
\hline 5 & 10 & 15 & 20 & 25 \\
\hline \multicolumn{5}{|l|}{\(\mathrm{v}=\)} \\
\hline 1 & 4 & 9 & 16 & 25 \\
\hline 4 & 16 & 36 & 64 & 100 \\
\hline 9 & 36 & 81 & 144 & 225 \\
\hline 16 & 64 & 144 & 256 & 400 \\
\hline 25 & 100 & 225 & 400 & 625 \\
\hline
\end{tabular}

See Also nornfit, normfit, norminv, normpdf, normpl ot, normnd, normspec

\section*{Purpose Pareto charts for Statistical Process Control.}

\section*{Syntax}

\section*{Description}

\section*{Example}
par et o( y )
pareto( \(y\), names)
h = pareto(...)
par et o( \(y\), names) displays a Pareto chart where the values in the vector y are drawn as bars in descending order. Each bar is labeled with the associated value in the string matrix names. par et \(o(y)\) labels each bar with the index of the corresponding element in \(y\).

The line above the bars shows the cumulative percentage.
par et o( \(y\), names) labels each bar with the row of the string matrix names that corresponds to the plotted element of \(y\).
h = pareto(...) returns a combination of patch and line handles.
Create a Pareto chart from data measuring the number of manufactured parts rejected for various types of defects.
```

defects = ['pits';'cracks';' hol es';' dents'];
quantity = [5 3 19 25];
pareto(quant ity, def ects)

```


\footnotetext{
See Also
}
bar, capapl ot , eumapl ot, hi st, hi stfit, schart, xbarpl otPurposeSyntaxDescription

Principal Components Analysis (PCA) using the covariance matrix.
\(\mathrm{pc}=\mathrm{pcacov}(\mathrm{X})\)
[ \(\mathrm{pc}, \mathrm{l}\) at ent, expl ai ned] \(=\operatorname{pcacov}(\mathrm{X})\)
[ pc, I at ent, expl ai ned] = pcacov( \(X\) ) takes the covariance matrix \(X\) and returns the principal components in pc, the eigenvalues of the covariance matrix of \(X\) in I at ent, and the percentage of the total variance in the observations explained by each eigenvector in expl ai ned.

\section*{Example}
```

See Also barttest, pcares, princomp
variances =
517. }796
67.4964
12. }405
0. }237
expl ai ned =
86. }597
11. }288
2. }074
0.0397

```
```

l oad hal d

```
l oad hal d
covx = cov(i ngredi ents);
covx = cov(i ngredi ents);
[ pc, variances, expl ai ned] = pcacov(covx)
[ pc, variances, expl ai ned] = pcacov(covx)
pc =
pc =
    0.0678 -0.6460 0.5673 -0.5062
    0.0678 -0.6460 0.5673 -0.5062
    0.6785 -0.0200 -0.5440 -0.4933
    0.6785 -0.0200 -0.5440 -0.4933
    -0.0290 0.7553 0.4036 -0.5156
    -0.0290 0.7553 0.4036 -0.5156
    -0.7309 -0.1085 -0.4684 -0.4844
```

 -0.7309 -0.1085 -0.4684 -0.4844
    ```

J ackson, J. E., A User's Guideto Principal Components, J ohn Wiley and Sons, Inc. 1991. pp. 1-25.


Purpose Probability density function (pdf) for a specified distribution.

\section*{Syntax \(\quad Y=\operatorname{pdf}\left({ }^{\prime}\right.\) name' , X, A1, A2, A3)}

\section*{Description}

\section*{Examples}
```

p = pdf('Nor mal ' , - 2: 2,0,1)
p =
lllll
p = pdf(' Poi sson', 0: 4, 1:5)
p =
lllll

```

See Also
bet apdf, bi nopdf, cdf , chi 2pdf , exppdf , f pdf, gampdf, geopdf , hygepdf, l ognpdf, nbi npdf, ncf pdf, nct pdf , ncx2pdf, nor mpdf, poi sspdf, rayl pdf, t pdf, uni dpdf, uni f pdf, wei bpdf

\section*{Purpose Pairwise distance between observations.}

\author{
Syntax
}
\(Y=\operatorname{pdi} \operatorname{st}(X)\)
\(Y=\operatorname{pdi} s t(X\), met ric')
\(Y=\operatorname{pdi}\) st ( X, ' minkowski \({ }^{\prime}, \mathrm{p}\) )
Description \(\quad Y=\) pdi st \((X)\) computes the Euclidean distance between pairs of objects in \(m\)-by-n matrix \(X\), which is treated as \(m\) vectors of size \(n\). F or a dataset made up of \(m\) objects, there are \((m-1) \cdot m / 2\) pairs.

The output, Y , is a vector of length \((\mathrm{m}-1) \cdot \mathrm{m} / 2\), containing the distance information. The distances are arranged in the order ( 1,2 ), ( 1,3 ), ..., ( \(1, \mathrm{~m}\) ), \((2,3), \ldots,(2, m), \ldots, \ldots,(m-1, m)\). \(Y\) is also commonly known as a similarity matrix or dissimilarity matrix.

To save space and computation time, \(Y\) is formatted as a vector. However, you can convert this vector into a square matrix using the squar ef or mfunction so that element i,j in the matrix corresponds to the distance between objects i and j in the original dataset.
\(Y=\) pdi st ( X , ' metric') computes the distance between objects in the data matrix, \(X\), using the method specified by ' metric', where ' met ric' can be any of the following character strings that identify ways to compute the distance.
\begin{tabular}{l|l}
\hline String & Meaning \\
\hline ' Eucl i d' & Euclidean distance (default) \\
\hline ' SEucl i d' & Standardized Euclidean distance \\
\hline ' Mahal ' & Mahalanobis distance \\
\hline ' Ci tyBl ock' & City Block metric \\
\hline ' M nkowski ' & Minkowski metric \\
\hline
\end{tabular}

Y = pdi st ( X, ' minkowski ' p ) computes the distance between objects in the data matrix, X , using the Minkowski metric. p is the exponent used in the Minkowski computation which, by default, is 2.

\section*{Mathematical Definitions of Methods}

Given an m-by-n data matrix \(X\), which is treated as \(m\) (1-by-n) row vectors \(x_{1}\), \(x_{2}, \ldots, x_{m}\), the various distances between the vector \(x_{r}\) and \(x_{s}\) are defined as follows:
- Euclidean distance
\[
d_{r s}^{2}=\left(x_{r}-x_{s}\right)\left(x_{r}-x_{s}\right)^{\prime}
\]
- Standardized Euclidean distance
\[
d_{r s}^{2}=\left(x_{r}-x_{s}\right) D^{-1}\left(x_{r}-x_{s}\right)^{\prime}
\]
where \(D\) is the diagonal matrix with diagonal elements given by \(v_{j}^{2}\), which denotes the variance of the variable \(\mathrm{X}_{\mathrm{j}}\) over the m objects.
- Mahalanobis distance
\[
\mathrm{d}_{\mathrm{rs}}^{2}=\left(\mathrm{x}_{\mathrm{r}}-\mathrm{x}_{\mathrm{s}}\right)^{\prime} \mathrm{V}^{-1}\left(\mathrm{x}_{\mathrm{r}}-\mathrm{x}_{\mathrm{s}}\right)
\]
where V is the sample covariance matrix.
- City Block metric
\[
d_{r s}=\sum_{j=1}^{n}\left|x_{r j}-x_{s j}\right|
\]
- Minkowski metric
\[
d_{r s}=\sum_{\mid j=1}^{n}\left|x_{r j}-x_{s j}\right|^{p} 1 / p
\]

Notice that for the special case of \(p=1\), the Minkowski metric gives the City Block metric, and for the special case of \(p=2\), the Minkowski metric gives the Euclidean distance.
Examples
X = [1 2; 1 3; 2 2; 3 1]
\[
X=
\]
\[
\begin{array}{ll}
1 & 2
\end{array}
\]
\[
13
\]
\[
2 \quad 2
\]
\[
\begin{array}{ll}
3 & 1
\end{array}
\]
\[
Y=\operatorname{pdi} \operatorname{st}(X, \text { ' mahal ' ) }
\]
\[
Y=
\]
1. 2247
1. 2247
2. 3452
2. 0000
2. 3452
2. 4495
\(Y=\operatorname{pdi} \operatorname{st}(X)\)
\(Y=\)
1. 0000
1. 0000
2. 2361
1. 4142
2. 8284
1. 4142
squar ef orm Y )
ans \(=\)
\begin{tabular}{rrrr}
0 & 1.0000 & 1.0000 & 2.2361 \\
1.0000 & 0 & 1.4142 & 2.8284 \\
1.0000 & 1.4142 & 0 & 1.4142 \\
2.2361 & 2.8284 & 1.4142 & 0
\end{tabular}

\section*{See Also}
cl ust er, cl ust er dat a, cophenet, dendr ogram i nconsi st ent, I i nkage, squar ef or \(m\)

Purpose All permutations.

\section*{Syntax}

Description
\(P=\operatorname{perns}(v)\) where \(v\) is a row vector of length \(n\), creates a matrix whose rows consist of all possible permutations of the \(n\) elements of \(v\). The matrix \(P\) contains n ! rows and n columns.
per \(n \Phi\) is only practical when \(n\) is less than 8 or 9 .

\section*{Example \\ perns([ \(\left.\begin{array}{ll}2 & 4\end{array}\right]\) ) \\ ans \(=\) \\ \begin{tabular}{lll}
6 & 4 & 2 \\
4 & 6 & 2 \\
6 & 2 & 4 \\
2 & 6 & 4 \\
4 & 2 & 6 \\
2 & 4 & 6
\end{tabular}}

\section*{Purpose Poisson cumulative distribution function (cdf).}

\section*{Syntax \(\quad P=\) poi \(\operatorname{sscdf}(X\), LAMBDA \()\)}

\section*{Description}
poi sscdf ( \(X\), LAMBDA) computes the Poisson cdf at each of the values in \(X\) using the corresponding parameters in LAMBDA. Vector or matrix inputs for \(X\) and LAMBDA must be the same size. A scalar input is expanded to a constant matrix with the same dimensions as the other input. The parameters in LAMBDA must be positive.

The Poisson cdf is
\[
p=F(x \mid \lambda)=e^{-\lambda} \sum_{i=0}^{f l o o r(x)} \frac{\lambda^{i}}{i!}
\]

For example, consider a Quality Assurance department that performs random tests of individual hard disks. Their policy is to shut down the manufacturing process if an inspector finds more than four bad sectors on a disk. What is the probability of shutting down the process if the mean number of bad sectors \((\lambda)\) is two?
```

probability = 1 - poi sscdf(4,2)
probability =
0. }052

```

About 5\% of the time, a normally functioning manufacturing process will produce more than four flaws on a hard disk.

Suppose the average number of flaws \((\lambda)\) increases to four. What is the probability of finding fewer than five flaws on a hard drive?
```

probability $=$ poi sscdf $(4,4)$
probability =
0. 6288

```

This means that this faulty manufacturing process continues to operate after this first inspection almost \(63 \%\) of the time.

\section*{Purpose}

Syntax

Description

Parameter estimates and confidence intervals for Poisson data.
I ambdahat = poissfit(X)
[I andodahat, I ambdaci ] = poi ssfit(X)
[I ambdahat, I ambdaci] = poi ssfit(X, al pha)
poi ssfit( \(X\) ) returns the maximum likelihood estimate (MLE) of the parameter of the Poisson distribution, \(\lambda\), given the data \(X\).
[I ambdahat, I ambdaci ] = poi ssfit(X) also gives 95\% confidence intervals in I amdaci .
[ I anbdahat, I ambdaci ] = poi ssfit(X, al pha) gives 100(1-al pha) \% confidence intervals. F or example al pha \(=0.001\) yields \(99.9 \%\) confidence intervals.

The sample average is the MLE of \(\lambda\).
\[
\hat{\lambda}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
\]

\section*{Example}
```

r = poi ssrnd(5,10, 2);
[l,lci] = poi ssfit(r)
| =
7. }4000\quad6.300
l ci =
5.8000 4. 8000
9. }1000\mathrm{ 7. }900

```
See Also
bet afit, bi nofit, expfit, ganfit, poi sscdf, poi ssfit, poi ssi nv, poi sspdf, poi ssrnd, poi sstat, unifit, wei bfit
\begin{tabular}{|c|c|}
\hline Purpose & Inverse of the Poisson cumulative distribution function (cdf). \\
\hline Syntax & \(\mathrm{X}=\operatorname{poi} \operatorname{ssi} \mathrm{nv}(\mathrm{P}\), LAMBDA \()\) \\
\hline Description & poi ssi nv( \(P\), LAMBDA) returns the smallest value \(X\) such that the \(P\) oisson cdf evaluated at X equals or exceeds \(P\). \\
\hline Examples & \begin{tabular}{l}
If the average number of defects \((\lambda)\) is two, what is the 95 th percentile of the number of defects? \\
poi ssi nv(0.95, 2) \\
ans \(=\) \\
5
\end{tabular} \\
\hline & What is the median number of defects? medi an_defects \(=\) poi \(\operatorname{ssi} \operatorname{nv}(0.50,2)\) medi an_def ect s = 2 \\
\hline See Also & i cdf, poi sscdf, poi ssfit, poi sspdf, poi ssrnd, poi sst at \\
\hline
\end{tabular}

\section*{Purpose Poisson probability density function (pdf).}

\section*{Syntax \(\quad Y=\) poi sspdf \((X\), LAMBDA \()\)}

\section*{Description}

Examples

See Also pdf, poi sscdf, poi ssfit, poi ssi nv, poi ssrnd, poi sstat

Purpose Mean and variance for the Poisson distribution.
Syntax M = poi sstat (LAMBDA) [ M V ] = poi sstat (LAMBDA)
Description \(M=\) poi sst at (LAMBDA) returns the mean of the Poisson distribution withparameter LAMBDA. The size of Mis the size of LAMBDA.
[ M V] = poi sst at (LAMBDA) also returns the variance V of the Poissondistribution.For the Poisson distribution with parameter \(\lambda\), both the mean and varianceareequal to \(\lambda\).
Examples Find the mean and variance for the Poisson distribution with \(\lambda=2\).
[mv] = poi sstat([ \(\left.\begin{array}{llll}1 & 2 ; & 4 & 4\end{array}\right)\)
\(\mathrm{m}=\)
1 ..... 2
3 ..... 4
v =
1 ..... 234
See Also poi sscdf, poi ssfit, poi ssi nv, poi sspdf, poi ssrnd

Purpose Polynomial evaluation and confidence interval estimation.
Syntax \(\quad\)\begin{tabular}{rl}
{\([Y, D E L T A]\)} & \(=\operatorname{pol} y \operatorname{conf}(p, X, S)\) \\
{\([Y, D E L T A]\)} & \(=\operatorname{pol} y c o n f(p, X, S\), al pha \()\)
\end{tabular}

Description

\section*{Examples}

This example gives predictions and 90\% confidence intervals for computing time for LU factorizations of square matrices with 100 to 200 columns.
```

n = [100 100: 20: 200];
for i = n
A = rand(i,i);
tic
B = I u(A);
t(ceil((i-80)/20)) = toc;
end
[p,S] = pol yfit(n(2:7),t,3);
[tim@, del ta_t] = pol yconf(p,n(2:7), S, 0. 1)
time=

```
0. 0829
0. 1476
0. 2277
0. 3375
0. 4912
0. 7032
delta_t =
0. 0064
0. 0057
0. 0055
0. 0055
0. 0057
0. 0064

\section*{Purpose Polynomial curve fitting.}

\section*{Syntax \\ \([\mathrm{p}, \mathrm{S}]=\operatorname{pol} \mathrm{yfit}(\mathrm{x}, \mathrm{y}, \mathrm{n})\)}
\(p=\) pol yfit \((x, y, n)\) finds the coefficients of a polynomial \(p(x)\) of degree \(n\) that fits the data, \(p(x(i))\) to \(y(i)\), in a least-squares sense. The result \(p\) is a row vector of length \(n+1\) containing the polynomial coefficients in descending powers.
\[
p(x)=p_{1} x^{n}+p_{2} x^{n-1}+\ldots+p_{n} x+p_{n+1}
\]
[ \(\mathrm{p}, \mathrm{S}\) ] = pol yfit(x,y,n) returns polynomial coefficients pand matrix S for use with pol yval to produce error estimates on predictions. If the errors in the data, \(y\), are independent normal with constant variance, pol yval will produce error bounds which contain at least \(50 \%\) of the predictions.

You may omit S if you are not going to pass it to pol yval or pol yconf for calculating error estimates.

The pol yfit function is part of the standard MATLAB language.

\section*{Example}
```

[p,S] = pol yfit(1: 10, [1: 10] + normmd(0, 1, 1, 10), 1)

```
\[
p=
\]
\[
\text { 1. } 0300
\]
\[
\text { 0. } 4561
\]
\(\mathrm{S}=\)
-19. \(6214-2.8031\)
\(0-1.4639\)
8. \(0000 \quad 0\)
2. \(3180 \quad 0\)

\section*{See Also pol yval, pol ytool, pol yconf}
Purpose Interactive plot for prediction of fitted polynomials.
\begin{tabular}{ll} 
Syntax & pol yt ool \((x, y)\) \\
& pol yt ool \((x, y, n)\) \\
& pol ytool \((x, y, n\), al pha \()\)
\end{tabular}

\section*{Description}
pol yt ool ( \(\mathrm{x}, \mathrm{y}\) ) fits a line to the column vectors x and y and displays an interactive plot of the result. This plot is graphic user interface for exploring the effects of changing the polynomial degree of the fit. The plot shows the fitted curve and \(95 \%\) global confidence intervals on a new predicted value for the curve. Text with current predicted value of \(y\) and its uncertainty appears to the left of the \(y\)-axis.
pol yt ool ( \(x, y, n\) ) initially fits a polynomial of order \(n\).
pol yt ool ( \(\mathrm{x}, \mathrm{y}, \mathrm{n}\), al pha) plots 100(1-al pha) \% confidence intervals on the predicted values.
pol yt ool fits by least-squares using the regression model
\[
\begin{aligned}
& y_{i}=\beta_{0}+\beta_{1} x_{i}+\beta_{2} x_{i}^{2}+\ldots+\beta_{n} x_{i}^{n}+\varepsilon_{i} \\
& \varepsilon_{i} \sim N\left(0, \sigma^{2}\right) \quad \forall i \\
& \operatorname{Cov}\left(\varepsilon_{i}, \varepsilon_{j}\right)=0 \quad \forall i, j
\end{aligned}
\]

Evaluate the function by typing a value in the x-axis edit box or by dragging the vertical reference line on the plot. The shape of the pointer changes from an arrow to a cross hair when you are over the vertical line to indicate that the line can be dragged. The predicted value of \(y\) will update as you drag the reference line.

The argument n controls the degree of the polynomial fit. To change the degree of the polynomial, choose from the pop-up menu at the top of the figure. To change the type of confidence intervals, use the Bounds menu. To change from least squares to a robust fitting method, use the Method menu.

When you are done, press the Close button.

\section*{Purpose Polynomial evaluation.}
\begin{tabular}{ll} 
Syntax & \(Y=\operatorname{pol} \operatorname{yval}(p, X)\) \\
& {\([Y, \operatorname{DELTA}]=\operatorname{pol} \operatorname{yval}(p, X, S)\)}
\end{tabular}

Description \(\quad Y=\operatorname{pol} y v a l(p, X)\) returns the predicted value of a polynomial given its coefficients, \(p\), at the values in \(X\).
[ Y, DELTA] = pol yval ( \(\mathrm{p}, \mathrm{X}, \mathrm{S}\) ) uses the optional output S generated by pol yf it to generate error estimates, \(Y \pm\) DELTA. If the errors in the data input to pol yfit are independent normal with constant variance, \(Y \pm\) DELTA contains at least \(50 \%\) of the predictions.

If \(p\) is a vector whose elements are the coefficients of a polynomial in descending powers, then pol yval ( \(\mathrm{p}, \mathrm{X}\) ) is the value of the polynomial evaluated at \(X\). If \(X\) is a matrix or vector, the polynomial is evaluated at each of the elements.

The pol yval function is part of the standard MATLAB I anguage.
Examples
Simulate the function \(\mathrm{y}=\mathrm{x}\), adding normal random errors with a standard deviation of 0.1. Then usepol yf it to estimate the polynomial coefficients. Note that predicted \(Y\) values are within DELTA of the integer \(X\) in every case.
```

[p,S] = pol yfit(1:10,(1:10) + normmd(0,0.1,1,10),1);
X = magic(3);
[Y, D] = pol yval (p,X,S)
Y =
8.0696 1.0486 6.0636
3.0546 5. }060
7. }066
4. }057
9. }072
2. }051
D =

| 0.0889 | 0.0951 | 0.0861 |
| :--- | :--- | :--- |
| 0.0889 | 0.0861 | 0.0870 |
| 0.0870 | 0.0916 | 0.0916 |

```

See Also
pol yfit, pol ytool, pol yconf

Purpose Percentiles of a sample.

\section*{Syntax \\ \(\mathrm{Y}=\operatorname{prctile}(\mathrm{X}, \mathrm{p})\)}

Description
\(Y=\operatorname{prctile}(X, p)\) calculates a value that is greater than \(p\) percent of the values in \(X\). The values of \(p\) must lie in the interval [0100].

For vectors, prctile( \(X, p\) ) is the pth percentile of the elements in X . For instance, if \(p=50\) then \(Y\) is the median of \(X\).

For matrix \(X\) and scalar \(p\), prctile( \(X, p)\) is a row vector containing the pth percentile of each column. If \(p\) is a vector, the ith row of \(Y\) is \(p(i)\) of \(X\).

\section*{Examples}
```

x = (1:5)'*(1:5)
x =

| 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- |

 2 4
 3
 4
 5
 y = prctile(x,[25 50 75])
y =

| 1.7500 | 3.5000 | 5.2500 | 7.0000 | 8.7500 |
| ---: | ---: | ---: | ---: | ---: |
| 3.0000 | 6.0000 | 9.0000 | 12.0000 | 15.0000 |
| 4.2500 | 8.5000 | 12.7500 | 17.0000 | 21.2500 |

```
\begin{tabular}{|c|c|}
\hline Purpose & Principal Components Analysis (PCA). \\
\hline Syntax & \[
\begin{aligned}
& \text { PC = pri ncomp( X) } \\
& \text { [ PC, SCORE, I at ent, t square] = pri ncomp( X) }
\end{aligned}
\] \\
\hline Description & [ PC, SCORE, I at ent, t squar e] = pri ncomp( X) takes a data matrix \(X\) and returns the principal components in PC, the so-called Z-scores in SCORE, the eigenvalues of the covariance matrix of \(X\) in I at ent, and Hotelling's \(\mathrm{T}^{2}\) statistic for each data point in tsquare. \\
\hline & The Z-scores are the data formed by transforming the original data into the space of the principal components. The values of the vector, I at ent, are the variance of the columns of SCORE. Hotelling's \(T^{2}\) is a measure of the multivariate distance of each observation from the center of the data set. \\
\hline Example & Compute principal components for the ingredi ents data in the Hald dataset, and the variance accounted for by each component. \\
\hline & ```
I oad hal d;
[ pc, score, l at ent,t square] = pri ncomp(i ngredi ents);
pc, I at ent
``` \\
\hline & pc = \\
\hline & \(\begin{array}{llll}0.0678 & -0.6460 & 0.5673-0.5062\end{array}\) \\
\hline & 0.6785-0.0200 -0.5440-0.4933 \\
\hline & \(\begin{array}{llll}-0.0290 & 0.7553 & 0.4036 & -0.5156\end{array}\) \\
\hline & -0.7309 -0.1085-0.4684-0.4844 \\
\hline & 1 at ent = \\
\hline & 517. 7969 \\
\hline & 67. 4964 \\
\hline & 12. 4054 \\
\hline & 0. 2372 \\
\hline Reference & J ackson, J. E., A User's Guide to Principal Components, J ohn Wiley and Sons, Inc. 1991. pp. 1-25. \\
\hline See Also & barttest, pcacov, pcares \\
\hline
\end{tabular}

\section*{qqplot}

Purpose Quantilequantile plot of two samples.

\section*{Syntax qqpl ot (X)}
qqpl ot (\(X, Y\))
qqpl ot (\(X, Y\), pvec)
h = qqpl ot (...)

Description

Examples
qqpl ot (\(X\)) displays a quantile-quantile plot of the samplequantiles of \(X\) versus theoretical quantiles from a normal distribution. If the distribution of \(X\) is normal, the plot will be close to linear.
qqpl ot (\(X, Y\)) displays a quantile-quantile plot of two samples. If the samples do come from the same distribution, the plot will be linear.

For matrix \(X\) and \(Y\), qqpl ot displays a separate line for each pair of columns. The plotted quantiles are the quantiles of the smaller dataset.

The plot has the sample data displayed with the plot symbol ' + '
Superimposed on the plot is a line joining the first and third quartiles of each distribution (this is a robust linear fit of the order statistics of the two samples). This line is extrapolated out to the ends of the sample to help evaluate the linearity of the data.

Use qqpl ot (\(X, Y, p v e c\)) to specify the quantiles in the vector pvec.
\(h=q q p l\) ot \((X, Y, p v e c)\) returns handles to the lines in \(h\).
Generate two normal samples with different means and standard deviations. Then make a quantile-quantile plot of the two samples.
```

x = normmd(0, 1, 100, 1);
y = normmd(0.5, 2,50,1);
qqpl ot ( }x,y\mathrm{ ) ;

```


See Also
nor mpl ot

\section*{random}

\section*{Purpose Random numbers from a specified distribution.}

\section*{Syntax \(\quad y=\) random \({ }^{\prime}\) name' , A1, A2, A3, m n)}

\section*{Description}

\section*{Examples}

See Also
bet ar nd, bi nor nd, cdf, chi 2rnd, expr nd, frnd, gam nd, geor nd, hyger nd, i cdf, I ognr nd, nbi nr nd, ncfrnd, nct rnd, ncx2rnd, normnd, pdf, poi ssrnd, rayl rnd, trnd, uni drnd, uni frnd, wei br nd
\begin{tabular}{|c|c|}
\hline Purpose & Interactive random number generation using histograms for display. \\
\hline Syntax & \begin{tabular}{l}
randt ool \\
r = randt ool (' out put')
\end{tabular} \\
\hline \multirow[t]{10}{*}{Description} & The randt ool command sets up a graphic user interface for exploring the effects of changing parameters and sample size on the histogram of random samples from the supported probability distributions. \\
\hline & The M-file calls itself recursively using the act i on and flag parameters. For general use call randt ool without parameters. \\
\hline & To output the current set of random numbers, press the Output button. The results are stored in the variable ans. Alternatively, use the following command. \\
\hline & \(r=r a n d t\) ool (' out put ') places the sample of random numbers in the vector \(r\). \\
\hline & To sample repetitively from the same distribution, press the Resample button. \\
\hline & To change the distribution function, choose from the pop-up menu of functions at the top of the figure. \\
\hline & To change the parameter settings, move the sliders or type a value in the edit box under the name of the parameter. To change the limits of a parameter, type a value in the edit box at the top or bottom of the parameter slider. \\
\hline & To change the sample size, type a number in the Sample Size edit box. \\
\hline & When you are done, press the Close button. \\
\hline & For an extensive discussion, see "The randtool Demo" on page 1-169. \\
\hline See Also & di sttool \\
\hline
\end{tabular}

\section*{range}
\begin{tabular}{|c|c|}
\hline Purpose & Sample range． \\
\hline Syntax & \(y=r a n g e(X)\) \\
\hline \multirow[t]{2}{*}{Description} & range（ \(X\) ）returns the difference between the maximum and the minimum of a sample．For vectors，\(r\) ange \((x)\) is the range of the elements．F or matrices， \(r\) ange \((X)\) is a row vector containing the range of each column of \(X\) ． \\
\hline & The range is an easily calculated estimate of the spread of a sample．Outliers have an undue influence on this statistic，which makes it an unreliable estimator． \\
\hline \multirow[t]{4}{*}{Example} & The range of a large sample of standard normal random numbers is approximately six．This is the motivation for the process capability indices \(C_{p}\) and \(\mathrm{C}_{\mathrm{pk}}\) in statistical quality control applications． \\
\hline & ```
rv = normmd(0, 1, 1000,5);
near6 = range(rv)
``` \\
\hline & near \(6=\) \\
\hline & \(\begin{array}{lllll}\text { 6．} 1451 & \text { 6．} 4986 & \text { 6．} 2909 & \text { 5．} 8894 & \text { 7．} 0002\end{array}\) \\
\hline See Also & st d，i qr，n⿴囗十介 \\
\hline
\end{tabular}

\section*{Purpose Wilcoxon rank sum test that two populations are identical.}
\begin{tabular}{ll} 
Syntax & \(p=r\) anksunt \(x, y\), al pha) \\
& {\([p, h]=\) ranksunt \(x, y\) al pha) } \\
& \([p, h\), stat \(s]=\) ranksumf \(x, y\), al pha \()\)
\end{tabular}

Description

Example
This example tests the hypothesis of equality of means for two samples generated with poi ssrnd.
```

x = poi ssrnd(5,10, 1);
y = poi ssrnd(2,20,1);
[p,h] = ranksum(x, y, 0.05)
p =
0.0027
h =
1

```

See Also si gnrank, si gnt est, ttest 2

\section*{raylcdf}

\section*{Purpose Rayleigh cumulative distribution function (cdf).}

\section*{Syntax \\ P = rayl cdf ( \(\mathrm{X}, \mathrm{B}\) )}

Description
\(P=r\) ayl cdf ( \(X, B\) ) computes the Rayleigh cdf at each of the values in \(X\) using the corresponding parameters in \(B\). Vector or matrix inputs for \(X\) and \(B\) must have the same size, which is also the size of \(P\). A scalar input for \(X\) or \(B\) is expanded to a constant matrix with the same dimensions as the other input.

The Rayleigh cdf is
\[
y=F(x \mid b)=\int_{0}^{x} \frac{t}{b^{2}} e^{\left(\frac{-t^{2}}{2 b^{2}}\right)} d t
\]

\section*{Example}
\(\begin{array}{ll}\text { Reference } & \text { Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, Second } \\ \text { Edition, Wiley 1993. pp. 134-136. }\end{array}\)
See Also cdf, rayl inv, rayl pdf, rayl rnd, rayl st at
\begin{tabular}{|c|c|}
\hline Purpose & Inverse of the Rayleigh cumulative distribution function. \\
\hline Syntax & X = rayl inv( \(\mathrm{P}, \mathrm{B}\) ) \\
\hline Description & \(X=\) rayl inv(P,B) returns the inverse of the Rayleigh cumulative distribution function with parameter \(B\) at the corresponding probabilities in P. Vector or matrix inputs for \(P\) and \(B\) must have the same size, which is also the size of \(X\). A scalar input for P or B is expanded to a constant matrix with the same dimensions as the other input. \\
\hline Example & \(x=r a y l i n v(0.9,1) ~\) \\
\hline & \[
x=
\] \\
\hline See Also & i cdf, rayl cdf, rayl pdf, rayl rnd, rayl stat \\
\hline
\end{tabular}

\section*{raylpdf}

\section*{Purpose Rayleigh probability density function.}

\section*{Syntax \\ \(Y=r a y l p d f(X, B)\)}

\section*{Description}
\(Y=r\) ayl pdf ( \(X, B\) ) computes the Rayleigh pdf at each of the values in \(X\) using the corresponding parameters in \(B\). Vector or matrix inputs for \(X\) and \(B\) must have the same size, which is also the size of \(Y\). A scalar input for \(X\) or \(B\) is expanded to a constant matrix with the same dimensions as the other input.

The Rayleigh pdf is
\[
y=f(x \mid b)=\frac{x}{b^{2}} e^{\left(\frac{-x^{2}}{2 b^{2}}\right)}
\]

\section*{Example}
\[
\begin{aligned}
& x=0: 0.1: 3 ; \\
& p=r a y l \operatorname{pdf}(x, 1) ; \\
& \text { pl ot }(x, p)
\end{aligned}
\]


See Also pdf, rayl cdf, rayl inv, rayl rnd, rayl st at
\begin{tabular}{|c|c|}
\hline Purpose & Random matrices from the Rayleigh distribution. \\
\hline \multirow[t]{3}{*}{Syntax} & \(\mathrm{R}=\mathrm{rayl} \mathrm{rnd}(\mathrm{B})\) \\
\hline & \(R=r a y l r n d(B, m)\) \\
\hline & \(R=r a y l r n d(B, m n)\) \\
\hline \multirow[t]{6}{*}{Description} & \(R=r a y l r n d(B)\) returns a matrix of random numbers chosen from the \\
\hline & Rayleigh distribution with parameter B. The size of \(R\) is the size of \(B\). \\
\hline & \(\mathrm{R}=\mathrm{rayl} \mathrm{r}\) nd( \(\mathrm{B}, \mathrm{m})\) returns a matrix of random numbers chosen from the \\
\hline & Rayleigh distribution with parameter B , where mis a 1-by-2 vector that contains the row and column dimensions of \(R\). \\
\hline & \(R=r a y l r n d(B, m n)\) returns a matrix of random numbers chosen from the \\
\hline & Rayleigh distribution with parameter \(B\), where scal ars mand \(n\) are the row and column dimensions of \(R\). \\
\hline \multirow[t]{3}{*}{Example} & \(r\) = rayl rnd( 1:5) \\
\hline & \(r=\) \\
\hline & \(\begin{array}{lllll}1.7986 & 0.8795 & \text { 3. } 3473 & 8.9159 & 3.5182\end{array}\) \\
\hline See Also & random rayl cdf, rayl i nv, rayl pdf, rayl st at \\
\hline
\end{tabular}

\section*{raylstat}
\begin{tabular}{|c|c|}
\hline Purpose & Mean and variance for the Rayleigh distribution. \\
\hline Syntax & \[
\begin{aligned}
& M=r a y l \text { stat }(B) \\
& {[M V]=\text { rayl stat }(B)}
\end{aligned}
\] \\
\hline \multirow[t]{3}{*}{Description} & [ M V] = rayl st at (B) returns the mean and variance of the Rayleigh distribution with parameter B. \\
\hline & The mean of the Rayleigh distribution with parameter \(b\) is \(b \sqrt{\pi / 2}\) and the variance is \\
\hline & \[
\frac{4-\pi}{2} b^{2}
\] \\
\hline \multirow[t]{3}{*}{Example} & [ m, v] = rayl st at (1) \\
\hline & \[
\begin{aligned}
& \mathrm{mm}= \\
& 1.2533
\end{aligned}
\] \\
\hline & \[
v=0.4292
\] \\
\hline See Also & rayl cdf, rayl i nv, rayl pdf, rayl rnd \\
\hline
\end{tabular}

\section*{Purpose Residual case order plot.}

\section*{Syntax rcopl ot (r,rint)}

Description rcopl ot (r,rint) displays an errorbar plot of the confidence intervals on the residuals from a regression. The residuals appear in the plot in case order. Inputs \(r\) and rint are outputs from the regress function.

\section*{Example}
```

X = [ones(10, 1) (1: 10)'];
y = X * [10;1] + normnd(0,0.1,10,1);
[b, bi nt,r,rint] = regress(y,X,0.05);
rcopl ot(r,rint);

```


Thefigureshows a plot of theresiduals with error bars showing 95\% confidence intervals on the residuals. All the error bars pass through the zero line, indicating that there are no outliers in the data.

\section*{See Also regress}

Purpose Add a polynomial curve to the current plot.

\section*{Syntax}

Description
\(h=r e f c u r v e(p)\)
ref cur ve adds a graph of the polynomial \(p\) to the current axes. The function for a polynomial of degree \(n\) is:
\[
y=p_{1} x^{n}+p_{2} x^{(n-1)}+\ldots+p_{n} x+p_{n+1}
\]

Note that \(p_{1}\) goes with the highest order term.
\(h=r e f\) curve( \(p\) ) returns the handle to the curve.

\section*{Example}

\section*{See Also}
pol yfit, pol yval, refline

\section*{Purpose Add a reference line to the current axes.}

\section*{Syntax}
```

ref I i ne(sl ope, i nt er cept)
refli ne(slope)
h = refline(slope, i ntercept)
refline

```

\section*{Description}

\section*{Example}
```

pl ot (y,' +')
ref I i ne(0, 3)

```


Isline, pol yfit, pol yval, ref curve

Purpose Multiple linear regression.

\section*{Syntax \\ b \(=\) regress \((y, X)\)}
[ b, bint,r,rint,stats] = regress(y, X)
[b, bint,r,rint,stats] = regress(y, X, al pha)
Description

\section*{Examples}
\(b=r e g r e s s(y, X)\) returns the least squares fit of \(y\) on \(X\) by solving the linear model
\[
\begin{aligned}
& y=X \beta+\varepsilon \\
& \varepsilon \sim N\left(0, \sigma^{2} I\right)
\end{aligned}
\]
for \(\beta\), where:
- \(y\) is an \(n-b y-1\) vector of observations
- X is an n-by-p matrix of regressors
- \(\beta\) is a p-by- 1 vector of parameters
- \(\varepsilon\) is an \(n\)-by- 1 vector of random disturbances
[ b, bint, r, rint, st ats] = regress \((y, X)\) returns an estimate of \(\beta\) in \(b, a 95 \%\) confidence interval for \(\beta\) in the \(p-b y-2\) vector bi nt. The residuals are returned in \(r\) and a \(95 \%\) confidence interval for each residual is returned in the \(n-b y-2\) vector rint. The vector st ats contains the \(R^{2}\) statistic along with the \(F\) and \(p\) values for the regression.
[ b, bi nt,r,rint, stats] = regress(y, X, al pha) gives 100(1-al pha) \% confidence intervals for bi nt and rint. For example, al pha \(=0.2\) gives \(80 \%\) confidence intervals.

Suppose the true model is
\[
\begin{gathered}
y=10+x+\varepsilon \\
\varepsilon \sim N(0,0.01 I)
\end{gathered}
\]
wherel is the identity matrix.
\[
X=\left[\text { ones }(10,1)(1: 10)^{\prime}\right]
\]
```

X =
1
2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
10
y = X * [10; 1] + normmd(0,0.1,10,1)
y =
11. }116
12. }062
13. }007
14.0352
14.9303
16. }169
17. }005
18. }179
19. }026
20.0872
[b, bi nt] = regress(y, X, 0.05)
b =
10. }045
1. }003
bi nt =
9. 9165 10.1747
0.9822 1.0238

```

Compare b to [ 10 1]'. Note that bi nt includes the true model values.
Chatterjee, S. and A. S. Hadi. Influential Observations, High Leverage Points, and Outliers in Linear Regression. Statistical Science, 1986. pp. 379-416.

Purpose Regression diagnostics graphical user interface.
\begin{tabular}{ll} 
Syntax & \begin{tabular}{l} 
regst at \(s(r\) esponses, DATA) \\
regst at \(s(r\) esponses, DATA, ' nodel ' \()\)
\end{tabular} \\
Description & \begin{tabular}{l} 
regst at \(s(r\) esponses, DATA) generates regression diagnostics for a linear \\
additive model with a constant term. The dependent variable is the vector \\
responses. Values of the independent variables are in the matrix DATA.
\end{tabular}
\end{tabular}

The function creates a figure with a group of check boxes that save diagnostic statistics to the base workspace using variable names you can specify.
regst at s(responses, dat a, ' model ') controls the order of the regression model, where ' model ' can be one of these strings:
- 'i nt er acti on' - includes constant, linear, and cross product terms
- ' quadrat ic' - includes interactions and squared terms
- ' pur equadr at i c' - includes constant, linear, and squared terms

The literature suggests many diagnostic statistics for evaluating multiple linear regression. regst at s provides these diagnostics:
- Q from QR decomposition
- R from QR decomposition
- Regression coefficients
- Covariance of regression coefficients
- Fitted values of the response data
- Residuals
- Mean squared error
- Leverage
- "Hat" matrix
- Delete-1 variance
- Delete-1 coefficients
- Standardized residuals
- Studentized residuals
- Change in regression coefficients
- Change in fitted values
- Scaled change in fitted values
- Change in covariance
- Cook's distance

For more detail press the Help button in the regst at s window. This provides formulae and interpretations for each of these regression diagnostics.

\section*{Algorithm}

Reference

See Also I ever age, st epwi se, regr ess

Purpose Parameter estimates for ridge regression.

\section*{Syntax \\ b = ridge( \(y, X, k\) )}

\section*{Description}
\(b=r i d g e(y, x, k)\) returns the ridge regression coefficients \(b\) for the linear model \(y=X \beta+\varepsilon\), where:
- \(X\) is an \(n\)-by-p matrix
- y is the n -by-1 vector of observations
- k is a scalar constant (the ridge parameter)

The ridge estimator of \(\beta\) is \(\mathrm{b}=\left(\mathrm{X}^{\prime} \mathrm{X}+\mathrm{kI}\right)^{-1} \mathrm{X}^{\prime} \mathrm{y}\).
When \(k=0, b\) is the least squares estimator. For increasing \(k\), the bias of \(b\) increases, but the variance of \(b\) falls. For poorly conditioned \(X\), the drop in the variance more than compensates for the bias.

\section*{Example}

This example shows how the coefficients change as the value of \(k\) increases, using data from the hal d dataset.
```

I oad hal d;
b = zeros(4,100);
kvec = 0.01:0.01: 1;
count = 0;
for k = 0.01:0.01:1
count = count + 1;
b(:,count) = ri dge(heat, i ngredi ents, k) ;
end
pl ot(kvec', b'), xl abel (' k'), yl abel (' b' ,' Font Name' ,' Symbol ')

```


\section*{robustdemo}
\begin{tabular}{|c|c|}
\hline Purpose & Demo of robust regression. \\
\hline Syntax & \begin{tabular}{l}
robust deno \\
robust demo( \(\mathrm{X}, \mathrm{Y}\) )
\end{tabular} \\
\hline Description & \begin{tabular}{l}
rsmdeñ demonstrates robust regression and ordinary least squares regression on a sample dataset. The function creates a figure window containing a scatter plot of sample data vectors \(X\) and \(Y\), al ong with two fitted lines cal culated using least squares and the robust bisquare method. The bottom of the figure shows the equations of the lines and the estimated error standard deviations for each fit. If you use the left mouse button to select an point and move it to a new location, both fits will update. If you hold down theright mouse button over any point, the point will be labeled with the leverage of that point on the least squares fit, and the weight of that point in the robust fit. \\
rsmdene ( \(X, Y\) ) performs the same demonstration using the \(X\) and \(Y\) values that you specify.
\end{tabular} \\
\hline Example & See "The robustdemo Demo" on page 1-172. \\
\hline See Also & robustfit, lever age \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Purpose & Robust regression. \\
Syntax & \(b=\) robustfit \((X, Y)\) \\
& {\([b\), stats \(]=\operatorname{robustfit}(X, Y)\)} \\
& {\([b\), stats \(]=\) robustfit \(\left(X, Y\right.\), ' uf un' \(^{\prime}, t\) une, ' const' \()\)}
\end{tabular}

Description \(\quad b=\) robustfit \((X, Y)\) uses robust regression to fit \(Y\) as a function of the columns of \(X\), and returns the vector \(b\) of coefficient estimates. The robust \(f\) it function uses an iteratively reweighted least squares algorithm, with the weights at each iteration calculated by applying the bisquare function to the residuals from the previous iteration. This algorithm gives lower weight to points that do not fit well. The results are less sensitive to outliers in the data as compared with ordinary least squares regression.
[b, stats] = robustfit(X,Y) also returns a stats structure with the following fields:
- stats. ol s_s - sigma estimate (rmse) from least squares fit
- st at s. robust_s - robust estimate of sigma
- st at s. mad_s - estimate of sigma computed using the median absolute deviation of the residuals from their median; used for scaling residuals during the iterative fitting
- stats.s - final estimate of sigma, the larger of robust_s and a weighted average of ol s_s and robust_s
- stats.se - standard error of coefficient estimates
- stats.t - ratio of b to stats.se
- stats.p - p-values for stats.t
- st at s. coeffcorr - estimated correlation of coefficient estimates
- stats. w - vector of weights for robust fit
- stats.h - vector of leverage values for least squares fit
- stats. dfe - degrees of freedom for error
- st at s. R - R factor in QR decomposition of X matrix

The robustfit function estimates the variance-covariance matrix of the coefficient estimates as \(V=\operatorname{inv}\left(X^{\prime} * X\right) *\) st ats. \(s^{\wedge} 2\). The standard errors and correlations are derived from V .
[ b, stats] = robustfit(X, Y, ' wf un' ,t une, ' const') specifies a weight function, a tuning constant, and the presence or absence of a constant term. The weight function ' wf un' can be any of the names listed in the following table.
\begin{tabular}{|c|c|c|}
\hline Weight function & Meaning & Tuning constant \\
\hline ' andr ews' & \(w=\left(\operatorname{abs}(r)\right.\) <pi ) . \({ }^{*}\) sin \((\mathrm{r}) . / \mathrm{r}\) & 1. 339 \\
\hline ' bi square' & \(\mathrm{w}=(\operatorname{abs}(\mathrm{r})<1) \cdot *(1-r . \wedge 2) \cdot{ }^{\wedge}\) & 4. 685 \\
\hline ' cauchy' & \(\mathrm{w}=1 . /\left(1+r .{ }^{\text {c }}\right.\) ) & 2. 385 \\
\hline 'fair' & \(\mathrm{w}=1 . /(1+\operatorname{abs}(\mathrm{r})\) ) & 1. 400 \\
\hline ' huber ' & \(w=1 . / \max (1, a b s(r))\) & 1. 345 \\
\hline ' I ogi stic' & \(\mathrm{w}=\mathrm{tanh}(\mathrm{r}) . / \mathrm{r}\) & 1. 205 \\
\hline 'tal war' & \(w=1 *(\operatorname{abs}(r)<1)\) & 2. 795 \\
\hline ' wel sch' & \(w=\exp (-(r . \wedge 2))\) & 2. 985 \\
\hline
\end{tabular}

The valuer in the weight function expression is equal to
```

resid/(tune*s*sqrt(1-h))

```
where resi \(d\) is the vector of residuals from the previous iteration, \(t\) une is the tuning constant, \(h\) is the vector of leverage values from a least squares fit, and \(s\) is an estimate of the standard deviation of the error term.
\[
s=\text { MAD/ } 0.6745
\]

The quantity MAD is the median absolute deviation of the residuals from their median. The constant 0.6745 makes the estimate unbiased for the normal distribution. If there are \(p\) col umns in the \(X\) matrix (including the constant term, if any), the smallest p-1 absolute deviations are excluded when computing their median.

In addition to the function names listed above, ' wf un' can be ' ol s' to perform unweighted ordinary least squares.

The argument t une overrides the default tuning constant from the table. A smaller tuning constant tends to downweight large residuals more severely,
and a larger tuning constant downweights large residuals less severely. The default tuning constants, shown in the table, yield coefficient estimates that are approximately \(95 \%\) as efficient as least squares estimates, when the response has a normal distribution with no outliers. The value of ' const' can be ' on' (the default) to add a constant term or ' of f' to omit it. If you want a constant term, you should set ' const ' to ' on' rather than adding a column of ones to your X matrix.

As an alternative to specifying one of the named weight functions shown above, you can write your own weight function that takes a vector of scaled residuals as input and produces a vector of weights as output. You can specify ' wf un' using @(for example, @nyf un) or as an inline function.

\section*{Example}

Let's see how a single erroneous point affects least squares and robust fits. First we generatea simple dataset following the equation \(y=10-2^{*} x\) plus some random noise. Then we change one y value to simulate an outlier that could be an erroneous measurement.
```

x = (1: 10)';
y = 10 - 2*x + randn(10,1);
y(10) = 0;

```

Weuse both ordinary least squares and robust fitting to estimate the equations of a straight line fit.
```

bl s = regress(y,[ones(10,1) x])
bl s =
8. 6305
-1. 4721
brob = robustfit(x, y)
brob =

```
10. 5089
-1. 9844
A scatter plot with both fitted lines shows that the robust fit (solid line) fits most of the data points well but ignores the outlier. Theleast squares fit (dotted line) is pulled toward the outlier.

\section*{robustfit}
```

scatter(x,y)
hold on
pl ot (x, bl s(1) +bl s(2)*x, ' g: ')
pl ot (x, brob(1) +brob(2)*x,'r-')

```


See Also regress, robust demo
References DuM ouchel, W.H., and F.L. O'Brien (1989), "Integrating a robust option into a multipleregression computing envi ronment," Computer Scienceand Statistics: Proceedings of the 21st Symposium on theI nterface, Alexandria, VA: American Statistical Association.

Holland, P.W., and R.E. Welsch (1977), "Robust regression using iteratively reweighted least-squares," Communi cations in Statistics: Theory and Methods, A6, 813-827.

Huber, P.J . (1981), Robust Statistics, New York: Wiley.
Street, J .O., R.J . Carroll, and D. Ruppert (1988), "A note on computing robust regression estimates via iteratively reweighted least squares," The American Statistician, 42, 152-154
\begin{tabular}{|c|c|}
\hline Purpose & D-optimal design of experiments - row exchange algorithm. \\
\hline Syntax & ```
settings = rowexch(nfact ors, nruns)
[settings,X] = rowexch(nfactors, nruns)
[ settings,X] = rowexch(nf act ors, nruns,' model ')
``` \\
\hline Description & \begin{tabular}{l}
settings = rowexch(nfact ors, nruns) generates the factor settings matrix, setti ngs, for a D-Optimal design using a linear additive model with a constant term. settings has nr uns rows and nf act or s columns. \\
[settings, X] = rowexch(nfactors, nruns) also generates the associated design matrix \(X\). \\
[settings, X] = rowexch(nfactors, nruns,' model ') produces a design for fitting a specified regression model. The input, ' model ' , can be one of these strings: \\
- 'int er action' - includes constant, linear, and cross product terms. \\
- ' quadr at i c' - interactions plus squared terms. \\
- ' pur equadr at i c' - includes constant, linear and squared terms.
\end{tabular} \\
\hline Example & This example illustrates that the D-optimal design for three factors in eight runs, using an interactions model, is a two level full-factorial design.
\[
\begin{aligned}
& s=r \text { owexch(3, 8, ' i nt er act i on') } \\
& s=\begin{array}{rrr}
\\
-1 & -1 & 1 \\
1 & -1 & -1 \\
1 & -1 & 1 \\
-1 & -1 & -1 \\
-1 & 1 & 1 \\
1 & 1 & 1 \\
-1 & 1 & -1 \\
1 & 1 & -1
\end{array}
\end{aligned}
\] \\
\hline See Also & cor dexch, daugment, dcovary, ful If act, ff 2 n , hadamar d \\
\hline
\end{tabular}
Purpose Demo of design of experiments and surface fitting.
Syntax rsmdeno
Description
Example See "The rsmdemo Demo" on page 1-170.
See Also rst ool, nl i nt ool, cor dexch
\begin{tabular}{|c|c|}
\hline Purpose & Interactive fitting and visualization of a response surface. \\
\hline Syntax & ```
rstool (x, y)
rstool (}x,y,\mp@code{\prime}\mathrm{ model')
rst ool (x, y,' model ', al pha,' xname',' yname')
``` \\
\hline Description & \begin{tabular}{l}
rst ool ( \(x, y\) ) displays an interactive prediction plot with \(95 \%\) global confidence intervals. This plot results from a multiple regression of ( \(x, y\) ) data using a linear additive model. \\
rst ool ( \(x, y\), ' model ' ) allows control over the initial regression model, where ' model ' can be one of the following strings: \\
- ' i nt er acti on' - includes constant, linear, and cross product terms \\
- ' quadr at ic' - includes interactions and squared terms \\
- ' pur equadr at ic' - includes constant, linear and squared terms \\
rst ool ( \(x\), y, ' model ' , al pha) plots 100(1-al pha) \% global confidence interval for predictions as two red curves. For example, al pha \(=0.01\) gives \(99 \%\) confidence intervals. \\
rst ool displays a "vector" of plots, one for each column of the matrix of inputs \(x\). The response variable, \(y\), is a column vector that matches the number of rows in \(x\). \\
rst ool ( \(x, y\), ' model ' , al pha, ' xname' , ' yname' ) labels the graph using the string matrix ' xname' for the labels to the \(x\)-axes and the string, ' yname' , to label the y-axis common to all the plots. \\
Drag the dotted white reference line and watch the predicted values update simultaneously. Alternatively, you can get a specific prediction by typing the value of \(x\) into an editable text field. Use the pop-up menu label ed Model to interactively change the model. Use the pop-up menu labeled Export to move specified variables to the base workspace.
\end{tabular} \\
\hline Example & See "Quadratic Response Surface M odels" on page 1-86. \\
\hline See Also & nl i nt ool \\
\hline
\end{tabular}

\section*{schart}

\section*{Purpose Chart of standard deviation for Statistical Process Control.}
```

Syntax schart(DATA, conf)
schart(DATA, conf,specs)
schart(DATA, conf,specs)
[outliers,h] = schart(DATA, conf,specs)

```

Description
schart ( dat a) displays an S chart of the grouped responses in DATA. The rows of DATA contain replicate observations taken at a given time. The rows must be in time order. The graph contains the sample standard deviation \(s\) for each group, a center line at the average s value, and upper and lower control limits. The limits areplaced at a three-sigma distance on either side of the center line, where sigma is an estimate of the standard deviation of \(s\). If the process is in control, fewer than 3 out of 1000 observations would be expected to fall outside the control limits by random chance. So, if you observe points outside the limits, you can take this as evidence that the process is not in control.
schart ( DATA, conf ) allows control of the confidence level of the upper and lower plotted control limits. The default conf \(=0.9973\) produces three-sigma limits.
```

norminv(1 - (1-. 9973)/2)
ans =

```

\section*{3}

To get k-sigma limits, use the expression 1-2*(1-nor medf (k) ). F or example, the correct conf value for 2 -sigma limits is 0.9545 , as shown below.
```

k = 2;
1- 2*(1-normadf(k))
ans =
0. }954

```
schart ( DATA, conf, specs) plots the specification limits in the two element vector specs.
[ outliers, h] = schart(data, conf, specs) returns outliers, a vector of indices to the rows where the mean of DATA is out of control, and \(h\), a vector of handles to the plotted lines.

\section*{Example}

\section*{Reference}

See Also capapl ot, eummpl ot, hi stfit, xbarpl ot
Purpose Wilcoxon signed rank test of equality of medians.
\begin{tabular}{ll} 
Syntax & \(p=\operatorname{signrank}(x, y\), al pha \()\) \\
& {\([p, h]=\operatorname{signrank}(x, y\), al pha \()\)} \\
& {\([p, h, s t a t s]=\operatorname{signrank}(x, y\), al pha \()\)}
\end{tabular}

Description \(\quad p=\operatorname{si} \operatorname{gnr} \operatorname{ank}(x, y\), al pha) returns the significance probability that the medians of two matched samples, \(x\) and \(y\), are equal. \(x\) and \(y\) must be vectors of equal length. y may also be a scalar; in this case, si gnrank computes the probability that the median of \(x\) is different from the constant \(y\). al pha is the desired level of significance, and must be a scalar between zero and one.
[ \(p, h]=\) si \(\operatorname{gnr} \operatorname{ank}(x, y\), al pha) also returns the result of the hypothesis test, \(h\). \(h\) is zero if the difference in medians of \(x\) and \(y\) is not significantly different from zero. \(h\) is one if the two medians are significantly different.
\(p\) is the probability of observing a result equally or more extreme than the one using the data ( \(x\) and \(y\) ) if the null hypothesis is true. \(p\) is calculated using the rank values for the differences between corresponding elements in \(x\) and \(y\). If \(p\) is near zero, this casts doubt on this hypothesis.
[ \(\mathrm{p}, \mathrm{h}\), st at s] = si gnrank( \(\mathrm{x}, \mathrm{y}\), al pha) also returns a structure st at s containing the field st at s. si gnedr ank whose value is the signed rank statistic. For large samples, it also contains st ats. zval, the value of the normal (Z) statistic used to compute \(p\).

\section*{Example This example tests the hypothesis of equality of means for two samples} generated with nor mond. The samples have the same theoretical mean but different standard deviations.
```

x = normmd(0, 1, 20, 1);
y = normmd(0, 2, 20,1);
[p,h] = si gnrank(x,y, 0.05)
p =
0. }295
h =
0

```
Purpose Sign test for paired samples.
\begin{tabular}{ll} 
Syntax & \(p=\operatorname{signtest}(x, y\), al pha \()\) \\
& {\([p, h]=\operatorname{signtest}(x, y\), al pha \()\)} \\
& {\([p, h, s t a t s]=\operatorname{signt} \operatorname{est}(x, y\), al pha \()\)}
\end{tabular}

Description \(\quad p=\) si gnt est ( \(x, y\), al pha) returns the significance probability that the medians of two matched samples, \(x\) and \(y\), are equal. \(x\) and \(y\) must be vectors of equal length. y may also be a scalar; in this case, si gnt est computes the probability that the median of \(x\) is different from the constant \(y\). al pha is the desired level of significance and must be a scalar between zero and one.
[ \(\mathrm{p}, \mathrm{h}]=\) si gnt est ( \(\mathrm{x}, \mathrm{y}, \mathrm{al} \mathrm{pha}\) ) also returns the result of the hypothesis test, \(h\). \(h\) is 0 if the difference in medians of \(x\) and \(y\) is not significantly different from zero. h is 1 if the two medians are significantly different.
\(p\) is the probability of observing a result equally or more extreme than the one using the data ( \(x\) and \(y\) ) if the null hypothesis is true. \(p\) is calculated using the signs (plus or minus) of the differences between corresponding elements in \(x\) and y . If p is near zero, this casts doubt on this hypothesis.
[ \(\mathrm{p}, \mathrm{h}\), st at s ] = si gnt est ( \(\mathrm{x}, \mathrm{y}\), al pha) also returns a structure st at s containing the field st at s. si gn whose value is the sign statistic. For large samples, it also contains st at s. zval , the value of the normal (Z) statistic used to compute \(p\).

Example This example tests the hypothesis of equality of medians for two samples generated with nor mnd. The samples have the same theoretical median but different standard deviations. (F or the normal distribution, the mean and median are the same.)
```

x = normmd(0, 1, 20, 1);
y = normmd(0, 2, 20,1);
[p,h] = si gntest(x,y,0.05)
p =
0. }263
h =
0

```

\footnotetext{
See Also
ranksum si gnrank, ttest
}

\section*{Purpose Sample skewness.}

\section*{Syntax \\ y = skewness( X ) \\ y \(=\) skewness( \(\mathrm{X}, \mathrm{fl}\) ag )}

Description
\(y=\) skeuness \((X)\) returns the sample skewness of \(X\). For vectors, skewness \((x)\) is the skewness of the elements of \(x\). For matrices, skewness \((X)\) is a row vector containing the sample skewness of each column.

Skewness is a measure of the asymmetry of the data around the sample mean. If skewness is negative, the data are spread out more to the left of the mean than to the right. If skewness is positive, the data are spread out more to the right. The skewness of the normal distribution (or any perfectly symmetric distribution) is zero.

The skewness of a distribution is defined as
\[
y=\frac{E(x-\mu)^{3}}{\sigma^{3}}
\]
where \(\mu\) is the mean of \(x, \sigma\) is the standard deviation of \(x\), and \(E(t)\) represents the expected value of the quantity \(t\).
\(y=s k e w n e s s(X, f l a g)\) specifies whether to correct for bias ( \(\mathrm{fl} \operatorname{ag}=0\) ) or not ( fl ag \(=1\), the default). When \(X\) represents a sample from a population, the skewness of \(X\) is biased; that is, it will tend to differ from the population skewness by a systematic amount that depends on the size of the sample. Y ou can set fl ag \(=0\) to correct for this systematic bias.

\section*{Example \(\quad X=\operatorname{randn}\left(\left[\begin{array}{ll}5 & 4\end{array}\right]\right)\)}
\(\mathrm{X}=\)
\begin{tabular}{rrrr}
1.1650 & 1.6961 & -1.4462 & -0.3600 \\
0.6268 & 0.0591 & -0.7012 & -0.1356 \\
0.0751 & 1.7971 & 1.2460 & -1.3493 \\
0.3516 & 0.2641 & -0.6390 & -1.2704 \\
-0.6965 & 0.8717 & 0.5774 & 0.9846
\end{tabular}
```

y = skewness(X)
y =

```
-0. 2933
0. 0482
0. 2735
0. 4641

See Also
kurt osi s, mean, moment, st d, var
\begin{tabular}{ll} 
Purpose & Reformat the output of pdi st into a square matrix. \\
Syntax & \(S=\) squar ef or \(m(Y)\) \\
Description & \begin{tabular}{l}
\(S=\) squar ef or \(m(Y)\) reformats the distance information returned by pdi st \\
from a vector into a square matrix. In this format, \(S(i, j)\) \\
between the \(i\) and \(j\) observations in the original data.
\end{tabular} \\
See Also & pdi st
\end{tabular}

\section*{Purpose Standard deviation of a sample.}

\section*{Syntax \\ \(y=s t d(X)\)}

Description \(\quad y=s t d(X)\) computes the sample standard deviation of the data in \(X\). For vectors, st \(d(x)\) is the standard deviation of the elements in \(x\). For matrices, st \(d(X)\) is a row vector containing the standard deviation of each column of \(X\).
st d normalizes by \(\mathrm{n}-1\) wheren is the sequencelength. For normally distributed data, the square of the standard deviation is the minimum variance unbiased estimator of \(\sigma^{2}\) (the second parameter).

The standard deviation is
\[
\left.s=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right)
\]
where the sample average is \(x=\frac{1}{n} \sum x_{i}\).
The st d function is part of the standard MATLAB Ianguage.
Examples In each column, the expected value of \(y\) is one.
```

x = normrnd(0, 1, 100, 6);
y = std(x)
y =

```
0.9536
1. 0628
1. 0860
0. 9927
0. 9605
1. 0254
\(y=\operatorname{std}(-1: 2: 1)\)
y =
1. 4142

\section*{See Also \\ cov, var}
Purpose Interactive environment for stepwise regression.
Syntax
Description

Example
Reference Draper, N. and H. Smith, Applied Regression Analysis, Second Edition, J ohn Wiley and Sons, Inc. 1981 pp. 307-312.

See Also regst at s, regress, rstool

\section*{Purpose Interactive contour plot.}

\section*{Syntax \\ surf ht ( \(Z\) ) \\ surfht ( \(x, y, Z\) )}

Description surfht \((Z)\) is an interactive contour plot of the matrix \(Z\) treating the values in \(Z\) as height above the plane. The \(x\)-values are the column indices of \(Z\) while the \(y\)-values are the row indices of \(Z\).
surf ht ( \(x, y, Z\) ) where \(x\) and \(y\) are vectors specify the \(x\) and \(y\)-axes on the contour plot. The length of \(x\) must match the number of columns in \(Z\), and the length of \(y\) must match the number of rows in \(Z\).

There are vertical and horizontal reference lines on the plot whose intersection defines the current \(x\)-value and \(y\)-value. You can drag these dotted white reference lines and watch the interpolated z-value (at the top of the plot) update simultaneously. Alternatively, you can get a specific interpolated \(z\)-value by typing the \(x\)-value and \(y\)-value into editable text fields on the \(x\)-axis and \(y\)-axis respectively.

\section*{tabulate}

\section*{Purpose Frequency table.}

\section*{Syntax \(\quad t\) able \(=\) tabul at \(e(x)\) \\ tabul ate( \(x\) )}

Description \(\quad t\) abl \(e=t\) abul at \(e(x)\) takes a vector of positive integers, \(x\), and returns a matrix, table.

The first column of \(t\) abl e contains the values of \(x\). The second contains the number of instances of this value. The last column contains the percentage of each value.
t abul at e with no output arguments displays a formatted table in the command window.

\section*{Example}
tabul ate([ \(\left.\begin{array}{llllll}1 & 2 & 4 & 4 & 3 & 4\end{array}\right]\)
\begin{tabular}{rrr} 
Val ue & Count & Percent \\
1 & 1 & \(16.67 \%\) \\
2 & 1 & \(16.67 \%\) \\
3 & 1 & \(16.67 \%\) \\
4 & 3 & \(50.00 \%\)
\end{tabular}

\section*{See Also par et o}
\begin{tabular}{|c|c|c|}
\hline Purpose & \multicolumn{2}{|l|}{Read tabular data from the file system.} \\
\hline Syntax & \multicolumn{2}{|l|}{```
[dat a, var names,casenames] = tbl read
[dat a, var names,casenames] = tbl read('filename')
[dat a, var names,casenames] = tbl read('fil ename',' del imiter')
```} \\
\hline Description & \begin{tabular}{l}
[dat a, var name interactivesel in the first row position. \\
[dat a, var name specification of pathname of a \\
[dat a, var name specification of 'space' , or ' c tbl read return
\end{tabular} & \begin{tabular}{l}
casenames] \(=\mathrm{t}\) bl read displays theFile Open dialog box for on of thetabular data file. Thefileformat has variable names ase names in the first column and data starting in the \((2,2)\) \\
casenames] = tbl read(filename) allows command line e name of a file in the current directory, or the complete file. \\
casenames] = tblread(fil ename,' delimiter') allows efield ' del imiter' in the file. Accepted values are ' tab ', \(\mathrm{m}^{\prime}\). \\
the data read in three values.
\end{tabular} \\
\hline & Return Value & Description \\
\hline & dat a & Numeric matrix with a value for each variable-case pair. \\
\hline & var names & String matrix containing the variable names in the first row. \\
\hline & casenames & String matrix containing the names of each case in the first column. \\
\hline
\end{tabular}
```

Example
[dat a, var names, casenames] = tbl read('sat.dat')
data =
470 530
520 480
varnames =
Male
Femal e
casenames =
Verbal
Quantitative

```

See Also
caseread, tbl write, tdfread
\begin{tabular}{|c|c|}
\hline Purpose & Writes tabular data to the file system. \\
\hline Syntax & \begin{tabular}{l}
tbl write(data, 'var names',' casenames') \\
tbl write(data, 'varnames',' casenames','filename')
\end{tabular} \\
\hline \multirow[t]{3}{*}{Description} & tbl write(dat a, 'var nanes' , ' casenames') displays the File Open dialog box for interactive specification of the tabular data output file. The file format has variable names in the first row, case names in the first column and dat a starting in the \((2,2)\) position. \\
\hline & var names' is a string matrix containing the variable names. ' casenames' is a string matrix containing the names of each case in the first column. dat a is a numeric matrix with a value for each variable-case pair. \\
\hline & tbl write(dat a, 'varnames',' casenames', 'fil enane') allows command line specification of a file in the current directory, or the complete pathname of any file in the string ' fil ename'. \\
\hline \multirow[t]{5}{*}{Example} & Continuing the example from \(t\) bl read: \\
\hline & t bl write(dat a, var names, casenames, ' sat test. dat ') type sattest.dat \\
\hline & Male Female \\
\hline & Verbal 470530 \\
\hline & Quantitative 520480 \\
\hline See Also & casewrite, tbl read \\
\hline
\end{tabular}

\section*{Purpose Student's t cumulative distribution function (cdf).}

\section*{Syntax \\ \(P=t c d f(X, V)\)}

Description

\section*{Examples}
\(P=t c d f(X, V)\) computes Student's \(t\) cdf at each of the values in \(X\) using the corresponding degrees of freedom in V. Vector or matrix inputs for X and V must be the same size. A scalar input is expanded to a constant matrix with the same dimensions as the other inputs. The parameters in V must be positive integers.

The t cdf is
\[
p=F(x \mid v)=\int_{-\infty}^{x} \frac{\Gamma\left(\frac{v+1}{2}\right)}{\Gamma\left(\frac{v}{2}\right)} \frac{1}{\sqrt{v \pi}} \frac{1}{\left(1+\frac{t^{2}}{v}\right)} d t
\]

The result, \(p\), is the probability that a singleobservation from thet distribution with \(v\) degrees of freedom will fall in the interval \((-\infty x]\).

Suppose 10 samples of Guinness beer have a mean alcohol content of \(5.5 \%\) by volume and the standard deviation of these samples is \(0.5 \%\). What is the probability that the true alcohol content of Guinness beer is less than 5\%?
```

t = (5.0-5.5) / 0.5;
probability = tcdf(t,10 - 1)
probability=
0. }171

```

See Also cdf, tinv, t pdf, trnd, tstat
\begin{tabular}{|c|c|}
\hline Purpose & Read file containing tab-delimited numeric and text values. \\
\hline Syntax & t df read tdfread(' filename') tdfread(' filename',' del imiter') \\
\hline Description & \begin{tabular}{l}
tdf r ead displays the File Open dialog box for interactive selection of the data file. The file should consist of columns of values, separated by tabs, and with column names in the first line of the file. E ach column is read from the file and assigned to a variable with the specified name. If all values for a column are numeric, the variable is converted to numbers; otherwise the variable is a string matrix. After all values are imported, t df read displays information about the imported values using the format of the whos command. \\
tdfread(' filename') allows command line specification of the name of a file in the current directory, or the complete pathname of any file. \\
tdfread(' filename', ' del imiter') indicates that the character specified by ' del i miter' separates columns in the file. Accepted values are: \\
- ' ' or 'space' \\
- ' \(\backslash t\) ' or 'tab' \\
-',' or ' comma' \\
- ';' or 'sem' \\
- '।' or 'bar' \\
The default delimiter is ' tab ' .
\end{tabular} \\
\hline Example & \begin{tabular}{l}
type sat2. dat \\
Test, Gender, Score \\
Verbal, Mai I, 470 \\
Ver bal , Fenal e, 530 \\
Quantitative, Mal e, 520 \\
Quant it at i ve, Femal e, 480 \\
t dfread('sat 2. dat', ', ')
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{llrl}
Name & Si ze & Byt es & Cl ass \\
Gender & \(4 \times 6\) & 48 & char array \\
Score & \(4 \times 1\) & 32 & doubl e array \\
Test & \(4 \times 12\) & 96 & char array
\end{tabular}

Grand total is 76 el ements using 176 bytes

\section*{See Also tbl read}

\section*{Purpose Inverse of the Student's t cumulative distribution function (cdf).}

\section*{Syntax \\ \(X=\operatorname{tinv}(P, V)\)}

\section*{Description}

\section*{Examples}

See Also icdf,tcdf,t pdf,trnd, tstat
The \(t\) inverse function in terms of the \(t\) cdf is
\[
x=F^{-1}(p \mid v)=\{x: F(x \mid v)=p\}
\]
where supply the desired probability \(p\). freedom?
```

percentile = tinv(0.99, 1: 6)
percentile =

```
\(X=\operatorname{tinv}(P, V)\) computes the inverse of Student's \(t\) cdf with parameter \(V\) for the corresponding probabilities in \(P\). Vector or matrix inputs for \(P\) and \(V\) must bethe same size. A scalar input is expanded to a constant matrix with the same dimensions as the other inputs. The degrees of freedom in V must be positive integers, and the values in P must lie on the interval [01].
\[
\mathrm{p}=\mathrm{F}(\mathrm{x} \mid \mathrm{v})=\int_{-\infty}^{\mathrm{x}} \frac{\Gamma\left(\frac{v+1}{2}\right)}{\Gamma\left(\frac{v}{2}\right)} \frac{1}{\sqrt{v \pi}} \frac{1}{\left(1+\frac{t^{2}}{v}\right)} \mathrm{\frac{v+1}{2}} \mathrm{dt}
\]

The result, \(x\), is the solution of the cdf integral with parameter \(v\), where you

What is the 99th percentile of the distribution for one to six degrees of
31.8205
6. 9646
4. 5407
3. 7469
3. 3649
3. 1427

\section*{tpdf}

Purpose Student's t probability density function (pdf).

\section*{Syntax \\ \(Y=t p d f(X, V)\)}

Description

Examples
The mode of the distribution is at \(x=0\). This example shows that the value of the function at the mode is an increasing function of the degrees of freedom.
```

t pdf(0, 1: 6)
ans =

```
0. 3183
0. 3536
0. 3676
0. 3750
0. 3796
0. 3827

Thet distribution converges to the standard normal distribution as the degrees of freedom approaches infinity. How good is the approximation for \(v=30\) ?
```

di fference = tpdf(-2. 5: 2. 5, 30) - normpdf (-2. 5: 2. 5)
difference =
0.0035 -0.0006 -0.0042 -0.0042 -0.0006 0.0035

```

See Also pdf,tcdf,tinv, trnd, tstat
\begin{tabular}{|c|c|}
\hline Purpose & Mean of a sample of data excluding extreme values. \\
\hline Syntax & \(\mathrm{m}=\) trimmean(X , per cent) \\
\hline Description & \(m=\) tri mmean(\(X\), per cent) calculates the mean of a sample \(X\) excluding the highest and lowest per cent / 2 of the observations. The trimmed mean is a robust estimate of the location of a sample. If there are outliers in the data, the trimmed mean is a more representative estimate of the center of the body of the data. If the data is all from the same probability distribution, then the trimmed mean is less efficient than the sample average as an estimator of the location of the data. \\
\hline Examples & This example shows a Monte Carlo simulation of the efficiency of the \(10 \%\) trimmed mean relative to the sample average for normal data. \\
\hline & ```
x = normrnd(0, 1, 100, 100);
m = mean(x);
trim = tri mmean(x, 10);
sm = std(m);
strim= std(trim);
efficiency =(smstrim).^2
effici ency =
``` \\
\hline & 0. 9702 \\
\hline See Also & mean, redi an, geomean, har mmean \\
\hline
\end{tabular}

\section*{Purpose Random numbers from Student's t distribution.}

\author{
Syntax
}
\(R=\operatorname{trnd}(V)\)
\(R=\operatorname{trnd}(V, m)\)
\(R=\operatorname{trnd}(V, m, n)\)
Description \(\quad R=\operatorname{trnd}(\mathrm{V}\) ) generates random numbers from Student's \(t\) distribution with \(V\) degrees of freedom. The size of \(R\) is the size of \(V\).
\(R=\operatorname{trnd}(\mathrm{V}, \mathrm{m})\) generates random numbers from Student'st distribution with \(\vee\) degrees of freedom, where mis a 1-by-2 vector that contains the row and column dimensions of \(R\).
\(R=t r n d(V, m n)\) generates random numbers from Student's \(t\) distribution with \(V\) degrees of freedom, where scalars mand \(n\) are the row and column dimensions of \(R\).

\section*{Examples}
noi sy \(=\)
19. 7250
0. 3488
0. 2843
0. 4034
0. 4816
-2. 4190
number s = trnd( 1: 6, [ 1 6])
numbers \(=\)
-1. 9500
-0. 9611
-0. 9038
0. 0754
0. 9820
1. 0115
number \(s=\operatorname{trnd}(3,2,6)\)
numbers \(=\)
-0. 3177
- 0.0812
- 0.6627
0. 1905
- 1. 5585
- 0.0433
0. 2536
0. 5502
0. 8646
0. 8060
- 0.5216
0. 0891

See Also tcdf, tinv, t pdf, t st at
Purpose Mean and variance for the Student's t distribution.

\section*{Syntax \\ [ M V ] = tstat(NU)}

\section*{Description}
[ M V] = tstat ( NU) returnsthemean and variancefor Student's t distribution with parameters specified by NU. Mand V are the same size as NU.
The mean of the Student'st distribution with parameter \(v\) is zerofor values of \(v\) greater than 1 . If \(v\) is one, the mean does not exist. The variancefor values of \(v\) greater than 2 is \(v /(v-2)\).
Examples Find the mean and variance for 1 to 30 degrees of freedom.
[ \(\mathrm{m} v\) ] \(=\mathrm{tst}\) at (reshape \((1: 30,6,5)\) )
\begin{tabular}{|c|c|c|c|c|}
\hline NaN & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}
\(v=\)
\begin{tabular}{rrrrr}
NaN & 1.4000 & 1.1818 & 1.1176 & 1.0870 \\
NaN & 1.3333 & 1.1667 & 1.1111 & 1.0833 \\
3.0000 & 1.2857 & 1.1538 & 1.1053 & 1.0800 \\
2.0000 & 1.2500 & 1.1429 & 1.1000 & 1.0769 \\
1.6667 & 1.2222 & 1.1333 & 1.0952 & 1.0741 \\
1.5000 & 1.2000 & 1.1250 & 1.0909 & 1.0714
\end{tabular}

Note that the variance does not exist for one and two degrees of freedom.

\footnotetext{
See Also tcdf, tinv, t pdf, trnd
}

\section*{Purpose Hypothesis testing for a single sample mean.}
```

Syntax
h = ttest (x, m)
$h=t t e s t(x, m$ al pha)
[h, si g, ci] = ttest(x, m al pha, tail)

```

\section*{Description}

\section*{Example This example generates 100 normal random numbers with theoretical mean zero and standard deviation one. The observed mean and standard deviation are different from their theoretical values, of course. We test the hypothesis that there is no true difference.}

Normal random number generator test.
\(x=\operatorname{normrnd}(0,1,1,100)\);
[h, si g, ci ] = ttest ( \(\mathrm{x}, 0\) )
\(\mathrm{h}=\)
0
si \(\mathrm{g}=\)
0. 4474
\(\mathrm{ci}=\)
-0. \(1165 \quad 0.2620\)
The result \(\mathrm{h}=0\) means that we cannot reject the null hypothesis. The significance level is 0.4474 , which means that by chance we would have observed values of T more extreme than the one in this example in 45 of 100 similar experiments. A 95\% confidence interval on the mean is [-0.1165 0.2620], which includes the theoretical (and hypothesized) mean of zero.

\section*{Purpose Hypothesis testing for the difference in means of two samples.}
Syntax \(\quad\)\begin{tabular}{rl}
{\([h\), si gnificance, \(c i]\)} & \(=\operatorname{ttest} 2(x, y)\) \\
{\([h\), si gnificance, ci \(]\)} & \(=\operatorname{ttest} 2(x, y\), al pha \()\) \\
{\([h\), si gnificance, \(c i]\)} & \(=\operatorname{ttest} 2(x, y\), al pha, tai \(I)\)
\end{tabular}

Description \(\quad h=t\) test \(2(x, y)\) performs a t-test to determine whether two samples from a normal distribution (in x and y ) could have the same mean when the standard deviations are unknown but assumed equal.

The result, h , is 1 if you can reject the null hypothesis at the 0.05 significance level al pha and 0 otherwise.

The si gni \(f i\) cance is the \(p\)-value associated with the T-statistic
\[
T=\frac{\bar{x}-\bar{y}}{s \sqrt{\frac{1}{n}+\frac{1}{m}}}
\]
where s is the pooled sample standard deviation and n and m are the numbers of observations in the \(x\) and \(y\) samples. si gni \(f i\) cance is the probability that the observed value of \(T\) could be as large or larger by chance under the null hypothesis that the mean of \(x\) is equal to the mean of \(y\).
ci is a \(95 \%\) confidence interval for the true difference in means.
[h, si gnificance, ci ] = ttest2(x,y, al pha) gives control of the significance level al pha. For exampleif al pha \(=0.01\), and the result, \(h\), is 1 , you can reject the null hypothesis at the si gni fi cance level 0.01 . ci in this case is a 100( 1-al pha) \% confidence interval for the true difference in means.
ttest 2( \(x, y\), al pha, t ai I) allows specification of one or two-tailed tests, where \(t\) ai \(I\) is a flag that specifies one of three alternative hypotheses:
- tail \(=0\) specifies the alternative \(\mu_{x} \neq \mu_{y}\) (default)
- tail \(=1\) specifies the alternative \(\mu_{x}>\mu_{y}\)
- tail \(=-1\) specifies the alternative \(\mu_{\mathrm{x}}<\mu_{\mathrm{y}}\)

\section*{Examples}

This example generates 100 normal random numbers with theoretical mean 0 and standard deviation 1 . Wethen generate 100 more normal random numbers with theoretical mean \(1 / 2\) and standard deviation 1 . The observed means and standard deviations are different from their theoretical values, of course. We test the hypothesis that there is no true difference between the two means. Notice that the true difference is only one half of the standard deviation of the individual observations, so we are trying to detect a signal that is only one half the size of the inherent noise in the process.
```

x = nor mrnd(0, 1, 100, 1);
y = normmd(0.5,1,100,1);
[h, si gni fi cance, ci] = ttest 2(x,y)
h =
1
significance =
0. }001
ci =
-0.7352 -0.1720

```

The result \(\mathrm{h}=1\) means that we can reject the null hypothesis. The si gni fi cance is 0.0017 , which means that by chance we would have observed values of \(t\) more extreme than the one in this example in only 17 of 10,000 similar experiments! A 95\% confidence interval on the mean is [-0.7352-0.1720], which includes the theoretical (and hypothesized) difference of -0.5.

\section*{unidcdf}

Purpose Discrete uniform cumulative distribution (cdf) function.

\section*{Syntax \(\quad P=\) uni dcdf \((X, N)\)}

Description

\section*{Examples}

See Also cdf, uni di nv, uni dpdf, uni dr nd, uni dst at

Purpose Inverse of the discrete uniform cumulative distribution function.

\section*{Syntax \(\quad X=\) uni di \(n v(P, N)\)}

Description \(\quad X=\) uni di \(n v(P, N)\) returns the smallest positive integer \(X\) such that the discrete uniform codf evaluated at \(X\) is equal to or exceeds \(P\). You can think of \(P\) as the probability of drawing a number as large as \(X\) out of a hat with the numbers 1 through \(N\) inside.

Vector or matrix inputs for \(N\) and \(P\) must have the same size, which is also the size of \(X\). A scalar input for \(N\) or \(P\) is expanded to a constant matrix with the same dimensions as the other input. The values in \(P\) must lie on the interval [01] and the values in N must be positive integers.

\section*{Examples}
```

x = uni di nv(0.7, 20)
x =
14
y = uni di nv(0.7 + eps, 20)
y =
1 5

```

A small change in the first parameter produces a large jump in output. The cdf and its inverse are both step functions. The example shows what happens at a step.

See Also i cdf, uni dcdf, uni dpdf, uni dr nd, uni dst at

\section*{unidpdf}

Purpose Discrete uniform probability density function (pdf).

\section*{Syntax \(\quad Y=\) uni \(d p d f(X, N)\)}

Description

\section*{Examples}

For fixed \(n\), the uniform discrete pdf is a constant.
\[
y=\operatorname{uni} \operatorname{dpdf}(1: 6,10)
\]
\(y=\)
0. 1000
0. 1000
0. 1000
0. 1000
0. 1000
0. 1000

Now fix \(x\), and vary n.
I i kel i hood \(=\) uni \(\operatorname{dpdf}(5,4: 9)\)
likelihood =
0
0. 2000
0. 1667
0. 1429
0. 1250
0. 1111

See Also pdf, uni dcdf, uni di nv, uni dr nd, uni dst at
\begin{tabular}{|c|c|}
\hline Purpose & Random numbers from the discrete uniform distribution. \\
\hline \multirow[t]{3}{*}{Syntax} & \(\mathrm{R}=\) uni \(\mathrm{dr} \mathrm{nd}(\mathrm{N})\) \\
\hline & \(\mathrm{R}=\) uni \(\mathrm{dr} \mathrm{nd}(\mathrm{N}, \mathrm{mm})\) \\
\hline & \(\mathrm{R}=\) uni \(\mathrm{dr} \mathrm{nd}(\mathrm{N}, \mathrm{mm} \mathrm{nn}\) ) \\
\hline \multirow[t]{4}{*}{Description} & The discrete uniform distribution arises from experiments equivalent to drawing a number from one to \(N\) out of a hat. \\
\hline & \(R=\) uni \(d r n d(N)\) generates discrete uniform random numbers with maximum \(N\). The parameters in \(N\) must be positive integers. The size of \(R\) is the size of \(N\). \\
\hline & \(R=\) uni \(\operatorname{dr} n d(N, n m)\) generates discrete uniform random numbers with maximum N , where mmis a 1-by-2 vector that contains the row and column dimensions of \(R\). \\
\hline & \(R=\) uni \(d r n d(N, n m n n)\) generates discrete uniform random numbers with maximum \(N\), where scalars mmand \(n n\) are the row and column dimensions of \(R\). \\
\hline \multirow[t]{4}{*}{Examples} & In the Massachusetts lottery, a player chooses a four digit number. Generate random numbers for M onday through Saturday. \\
\hline & numbers = uni drnd( 10000, 1, 6) - 1 \\
\hline & numbers \(=\) \\
\hline & \(\begin{array}{llll}2189 & 470 & 6788 & 6792\end{array}\) \\
\hline
\end{tabular}

\footnotetext{
See Also uni dcdf, uni di nv, uni dpdf, uni dst at
}

\section*{unidstat}
Purpose Mean and variance for the discrete uniform distribution.

\section*{Syntax \\ [ M V ] = unidstat( N )}

\section*{Description}
[ \(M \mathrm{~V}\) ] = uni dst at ( N ) returns the mean and variance for the discrete uniform distribution with parameter N .

The mean of the discrete uniform distribution with parameter \(N\) is \((N+1) / 2\). The variance is \(\left(N^{2}-1\right) / 12\).

\section*{Examples}
```

[m,v] = uni dstat(1: 6)
m}
1.0000 1.5000
2. 0000
2. 5000
3. 0000
3. 5000
v =

```
0
0. 2500
0. 6667
1. 2500
2. 0000
2. 9167

See Also uni dcdf, uni di nv, uni dpdf, uni dr nd
Purpose
 Continuous uniform cumulative distribution function (cdf).
Syntax \(P=\operatorname{unif} \mathrm{cdf}(\mathrm{X}, \mathrm{A}, \mathrm{B})\)
Description
ExamplesWhat is the probability that an observation from a standard uniformdistribution will be less than 0.75 ?
probability \(=\) uni fcdf ( 0.75 )

probability =
0.7500
What is the probability that an observation from a uniform distribution with \(a=-1\) and \(b=1\) will be less than 0.75 ?
probability \(=\) unif \(\mathrm{fdf}(0.75,-1,1)\)
probability =
0. 8750
See Also cdf, unifinv, unifit, uni f pdf, unifrnd, unif st at

\section*{unifinv}

Purpose Inverse continuous uniform cumulative distribution function (cdf).

\section*{Syntax \(\quad X=\operatorname{unifinv}(P, A, B)\)}

Description

\section*{Examples}

What is the median of the standard uniform distribution?
medi an_val ue = unifinv( 0.5 )
medi an_val ue =
0. 5000

What is the 99th percentile of the uniform distribution between -1 and 1 ?
percentile \(=\) unifinv( \(0.99,-1,1\) )
percentile =
0. 9800

See Also icdf, uni fcdf, unifit, unif pdf, unifrnd, unif st at

\section*{Purpose}

\author{
Syntax \\ Description
}

Parameter estimates for uniformly distributed data.
[ahat, bhat] = unifit(X)
[ahat, bhat, \(\mathrm{ACl}, \mathrm{BCl}\) ] = unifit(X)
[ ahat, bhat, \(\mathrm{ACl}, \mathrm{BCl}\) ] = unifit( X , al pha)
[ ahat, bhat] = unifit(X) returnsthemaximumlikelihood estimates (MLEs) of the parameters of the uniform distribution given the data in X .
[ ahat, bhat, \(\mathrm{ACI}, \mathrm{BCl}\) ] = unifit( X ) also returns 95\% confidence intervals, ACl and BCl , which are matrices with two rows. The first row contains the lower bound of the interval for each column of the matrix X . The second row contains the upper bound of the interval.
[ ahat, bhat, \(\mathrm{ACl}, \mathrm{BCl}\) ] = unifit( X , al pha) allows control of the confidence level al pha. For example, if al pha \(=0.01\) then ACI and BCl are \(99 \%\) confidence intervals.

\section*{Example}
```

r = uni frnd(10, 12, 100, 2);
[ahat,bhat,aci,bci] = unifit(r)
ahat =
10.0154 10.0060
bhat =
11.9989 11.9743
aci =
9.9551 9.9461
10.0154 10.0060
bci =
11.9989 11.9743
12.0592 12.0341

```
See Also bet afit, bi nofit, expfit, ganfit, nornfit, poi ssfit, unif cdf, unifinv,
    uni f pdf, uni frnd, unif st at, wei bf it

\section*{unifpdf}

Purpose Continuous uniform probability density function (pdf).

\section*{Syntax \(\quad Y=\) uni \(f p d f(X, A, B)\)}

Description
\(Y=\) uni \(f\) pdf ( \(X, A, B\) ) computes the continuous uniform pdf at each of the values in \(X\) using the corresponding parameters in \(A\) and \(B\). Vector or matrix inputs for \(X, A\), and \(B\) must all have the same size. A scalar input is expanded to a constant matrix with the same dimensions as the other inputs. The parameters in B must be greater than those in \(A\).

The continuous uniform distribution pdf is
\[
y=f(x \mid a, b)=\frac{1}{b-a} l_{[a, b]}(x)
\]

The standard uniform distribution has \(\mathrm{A}=0\) and \(\mathrm{B}=1\).
Examples For fixed a and b , the uniform pdf is constant.
```

x = 0. 1:0.1:0.6;
y = uni fpdf(x)
y =
1

```

What if x is not between a and b ?
\[
\begin{aligned}
& y=\operatorname{uni} f \operatorname{pdf}(-1,0,1) \\
& y=0
\end{aligned}
\]

See Also pdf, uni \(f(d f\), unifinv, uni \(f r n d\), unif \(f\) st at
\begin{tabular}{|c|c|}
\hline Purpose & Random numbers from the continuous uniform distribution. \\
\hline Syntax & \(R=u n i f r n d(A, B)\) \\
\hline & \(\mathrm{R}=\) unifrnd( \(A, B, m)\) \\
\hline & \(R=u n i f r n d(A, B, m n)\) \\
\hline Description & \(R=\) uni \(f r n d(A, B)\) generates uniform random numbers with parameters \(A\) and \(B\). Vector or matrix inputs for \(A\) and \(B\) must have the same size, which is al so the size of R. A scal ar input for A or B is expanded to a constant matrix with the same dimensions as the other input. \\
\hline & \(R=\) uni \(f r n d(A, B, m)\) generates uniform random numbers with parameters \(A\) and \(B\), where mis a 1-by- 2 vector that contains the row and column dimensions of \(R\). \\
\hline & \(R=u n i f r n d(A, B, m n)\) generates uniform random numbers with parameters \(A\) and \(B\), where scalars mand \(n\) are the row and column dimensions of \(R\). \\
\hline Examples & random \(=\) uni \(\mathrm{frnd}(0,1: 6)\) \\
\hline & random \(=\) \\
\hline & \(\begin{array}{llllll}0.2190 & 0.0941 & \text { 2. } 0366 & 2.7172 & 4.6735 & 2.3010\end{array}\) \\
\hline & random \(=\) uni \(\mathrm{frnd}\left(0,1: 6,\left[\begin{array}{ll}16\end{array}\right]\right)\) \\
\hline & random \(=\) \\
\hline & \(\begin{array}{llllll}0.5194 & 1.6619 & 0.1037 & 0.2138 & 2.6485 & 4.0269\end{array}\) \\
\hline & random \(=\) uni \(\mathrm{frnd}(0,1,2,3)\) \\
\hline & random = \\
\hline & \(\begin{array}{lll}0.0077 & 0.0668 & 0.6868\end{array}\) \\
\hline & \(\begin{array}{lll}0.3834 & 0.4175 & 0.5890\end{array}\) \\
\hline See Also & uni f cdf , uni fi nv, uni f pdf, uni f st at \\
\hline
\end{tabular}

\section*{unifstat}


See Also uni \(f c d f\), uni \(f i n v\), uni \(f\) pdf, uni \(f r n d\)

\section*{Purpose Variance of a sample.}

\section*{Syntax}
\(y=\operatorname{var}(X)\)
\(y=\operatorname{var}(X, 1)\)
\(\mathrm{y}=\operatorname{var}(\mathrm{X}, \mathrm{w})\)
Description
\(y=\operatorname{var}(X)\) computes the variance of the data in \(X\). For vectors, \(\operatorname{var}(x)\) is the variance of the elements in \(x\). For matrices, \(\operatorname{var}(X)\) is a row vector containing the variance of each column of \(X\).
\(y=\operatorname{var}(x)\) normalizes by \(n-1\) where \(n\) is the sequence length. For normally distributed data, this makes \(\operatorname{var}(x)\) the minimum variance unbiased estimator MVUE of \(\sigma^{2}\) (the second parameter).
\(y=\operatorname{var}(x, 1)\) normalizes by \(n\) and yields the second moment of the sample data about its mean (moment of inertia).
\(y=\operatorname{var}(X, w)\) computes the variance using the vector of positive weights \(w\). The number of el ements in w must equal the number of rows in the matrix \(X\). For vector \(x\), wand \(x\) must match in length.
var supports both common definitions of variance. Let SS be the sum of the squared deviations of the elements of a vector \(x\) from their mean. Then, \(\operatorname{var}(x)=S S /(n-1)\) is the MVUE, and \(\operatorname{var}(x, 1)=S S / n\) is the maximum likelihood estimator (MLE) of \(\sigma^{2}\).

See Also cov, st d

\section*{Purpose Weibull cumulative distribution function (cdf).}

\section*{Syntax \\ \(\mathrm{P}=\) wei \(\mathrm{bcdf}(\mathrm{X}, \mathrm{A}, \mathrm{B})\)}

\section*{Description}

\section*{Examples}

What is the probability that a value from a Weibull distribution with parameters \(a=0.15\) and \(b=0.24\) is less than 500?
probability \(=\) wei bcdf(500, 0. 15, 0. 24)
probability =
0. 4865

How sensitive is this result to small changes in the parameters?
```

[A, B] = meshgrid(0.1:0.05:0.2, 0. 2:0.05:0.3);
probability = wei bcdf(500, A, B)
probability =

```
\begin{tabular}{lll}
0.2929 & 0.4054 & 0.5000 \\
0.3768 & 0.5080 & 0.6116 \\
0.4754 & 0.6201 & 0.7248
\end{tabular}

See Also cdf, wei bfit, wei bi nv, wei bl i ke, wei bpdf, wei bpl ot , wei br nd, wei bst at

\section*{weibfit}

Purpose

\section*{Syntax \\ Description}

Example

\section*{See Also}

Parameter estimates and confidence intervals for Weibull data.
phat \(=\) wei bfit \((x)\)
[phat, pci ] = wei bfit(x)
[phat, pci] = wei bfit(x, al pha)
phat \(=\) wei bfit(x) returns the maximum likelihood estimates, phat, of the parameters of the Weibull distribution given the values in vector \(x\), which must be positive. phat is a two-element row vector: phat (1) estimates the Weibull parameter \(a\), and phat (2) estimates the Weibull parameter \(b\) in the pdf
\[
y=f(x \mid a, b)=a b x^{b-1} e^{-a x^{b}} I_{(0, \infty)}(x)
\]
[ phat, pci ] = wei bf it(x) also returns 95\% confidence intervals in the two-row matrix pci. The first row contains the lower bound of the confidence interval, and the second row contains the upper bound. The columns of pci correspond to the columns of phat.
[ phat, pci ] = wei bf it(x, al pha) allows control over the confidence interval returned, 100( 1-al pha) \%.
```

r = wei br nd(0.5,0.8,100,1);
[phat,pci] = wei bfit(r)
phat =
0.4746 0.7832
pci =
0.3851 0.6367
0. }564
0. }929

```
bet afit, bi nofit, expfit, ganfit, nornfit, poi ssfit, unifit, wei bcdf, wei bi nv, wei bl i ke, wei bpdf, wei bpl ot , wei br nd, wei bst at

\section*{Purpose Inverse of the Weibull cumulative distribution function.}

\section*{Syntax \\ \(X=\) wei bi \(n v(P, A, B)\)}

Description \(\quad X=\) wei bi \(n v(P, A, B)\) computes the inverse of the Weibull cdf with parameters \(A\) and \(B\) for the corresponding probabilities in \(P\). Vector or matrix inputs for \(P\), A, and B must all have the same size. A scalar input is expanded to a constant matrix with the same dimensions as the other inputs. The parameters in A and \(B\) must be positive.

The inverse of the Weibull cdf is
\[
x=F^{-1}(p \mid a, b)=\left[\frac{1}{a} \ln \left(\frac{1}{1-p}\right)\right]^{\frac{1}{b}} I_{[0,1]}(p)
\]

Examples A batch of light bulbs have lifetimes (in hours) distributed Weibull with parameters \(a=0.15\) and \(b=0.24\). What is the median lifetime of the bulbs?

I ife = wei bi \(\operatorname{nv}(0.5,0.15,0.24)\)
life =
588. 4721

What is the 90th percentile?
I ife = wei bi nv(0.9, 0. 15, 0. 24)
life =
8. \(7536 \mathrm{e}+04\)

See Also i cdf, wei bcdf, wei bf it, wei bl i ke, wei bpdf, wei bpl ot, wei br nd, wei bst at

\section*{weiblike}
\begin{tabular}{|c|c|}
\hline Purpose & Weibull negative log-likelihood function. \\
\hline Syntax & \[
\begin{aligned}
& \text { l ogL = wei bl i ke( par ans, dat a) } \\
& \text { [ l ogL, avar ] = wei bl i ke( par ans, dat a) }
\end{aligned}
\] \\
\hline \multirow[t]{5}{*}{Description} & \begin{tabular}{l}
\(\operatorname{logL}=\) wei blike(parans, dat a) returns the Weibull log-likelihood with parameters parans (1) \(=\mathrm{a}\) and parans (2) \(=\mathrm{b}\) given the dat a \(\mathrm{x}_{i}\). \\
[ l ogL, avar ] = wei bl i ke( par ans, dat a) also returns avar, which is the asymptotic variance-covariance matrix of the parameter estimates if the values in par ans are the maximum likelihood estimates. avar is the inverse of Fisher's information matrix. The diagonal elements of avar are the asymptotic variances of their respective parameters.
\end{tabular} \\
\hline & The Weibull negative log-likelihood is \\
\hline & n \\
\hline & \[
-\log L=-\log \prod_{i=1} f\left(a, b \mid x_{i}\right)=-\quad \log f\left(a, b \mid x_{i}\right)
\] \\
\hline & wei bli ke is a utility function for maximum likelihood estimation. \\
\hline \multirow[t]{7}{*}{Example} & This example continues the example from wei bf it. \\
\hline & \[
\begin{aligned}
& r=\text { wei br nd( } 0.5,0.8,100,1) ; \\
& [\text { I ogL, i nf o] = wei bl i ke([ } 0.47460 .7832], r)
\end{aligned}
\] \\
\hline & 1 ogL \(=\) \\
\hline & 203. 8216 \\
\hline & i nfo O \\
\hline & 0. \(0021 \quad 0.0022\) \\
\hline & 0. 00220.0056 \\
\hline Reference & Patel, J. K., C. H. Kapadia, and D. B. Owen, Handbook of Statistical Distributions, Marcel-Dekker, 1976. \\
\hline See Also & bet al i ke, gam i ke, ml e, wei bcdf, wei bf it, wei bi nv, wei bpdf, wei bpl ot, wei br nd, wei bst at \\
\hline
\end{tabular}

Purpose Weibull probability density function (pdf).

\section*{Syntax}

Description

Examples
The exponential distribution is a special case of the Weibull distribution.
I ambda = 1: 6;
y \(=\) wei \(\operatorname{bpdf}(0.1: 0.1: 0.6,1\) ambda, 1)
\(y=\)
0. 9048
0. 8076
0. 4104
0. 1639
1. 3406
1. 2197
y1 \(=\operatorname{exppdf}(0.1: 0.1: 0.6,1 . / I\) ambda)
y1 =
0. 9048
0. 8076
0. 4104
0. 1639
1. 3406
1. 2197

Reference Devroye, L., Non-U niform Random VariateGeneration. Springer-Verlag. New York, 1986.

See Also pdf, wei bcdf, wei bf it, wei bi nv, wei bli ke, wei bpl ot, wei br nd, wei bst at

\section*{weibplot}

\section*{Purpose Weibull probability plot.}

\section*{Syntax}

Description

Example
wei bpl ot ( X ) \(\mathrm{h}=\) wei bpl ot ( X )
wei bpl ot ( X ) displays a Weibull probability plot of the data in X . If X is a matrix, wei bpl ot displays a plot for each column.
\(h=\) wei bpl ot (X) returns handles to the plotted lines.
The purpose of a Weibull probability plot is to graphically assess whether the data in X could come from a Weibull distribution. If the data are Weibull the plot will be linear. Other distribution types may introduce curvature in the plot.
```

r = wei br nd(1. 2, 1. 5, 50, 1);
wei bpl ot (r)

```

Weibull Probability Plot


See Also nor mpl ot , wei bcdf, wei bf it, wei bi nv, wei bl i ke, wei bpdf, wei br nd, wei bst at

Purpose Random numbers from the Weibull distribution.

\section*{Syntax \\ Description}
\(R=\) wei \(b r \operatorname{nd}(A, B)\)
\(R=\) wei \(b r \operatorname{nd}(A, B, m)\)
\(R=\) wei \(\operatorname{br} \operatorname{nd}(A, B, m n)\)

\section*{Examples}

Reference

See Also wei bcdf, wei bf it, wei bi nv, wei bl i ke, wei bpdf, wei bpl ot, wei bst at

\section*{weibstat}

\section*{Purpose Mean and variance for the Weibull distribution.}

\section*{Syntax \\ [ M V] = wei bstat (A, B)}

\section*{Description}

\section*{Examples}
\begin{tabular}{llll}
\(\mathrm{m}=\) & \\
1.0000 & 0.6267 & 0.6192 & 0.6409 \\
\(v=\) & & & \\
& 1.0000 & 0.1073 & 0.0506
\end{tabular}
ans \(=\)
3. 4073

See Also wei bcdf, wei bf it, wei bi nv, wei bl i ke, wei bpdf, wei bpl ot , wei br nd

\section*{Purpose}

Syntax

Description

Example

See Also rstool, cor dexch, rowexch, regst at s

\section*{xbarplot}

\section*{Purpose X-bar chart for Statistical Process Control.}
```

Syntax xbarpl ot (DATA)
xbarpl ot (DATA, conf)
xbarpl ot(DATA, conf, specs,' si gmaest')
[outlier,h] = xbarpl ot(...)

```

Description xbarpl ot ( DATA) displays an \(x\)-bar chart of the grouped responses in DATA. The rows of DATA contain replicate observations taken at a given time, and must be in time order. The graph contains the sample mean \(\bar{x}\) for each group, a center line at the average \(\bar{x}\) value, and upper and lower control limits. The limits are placed at a three-sigma distance on either side of the center line, where sigma is an estimate of the standard deviation of x . If the process is in control, fewer than 3 out of 1000 observations would be expected to fall outside the control limits by random chance. So if you observe points outside the limits, you can take this as evidence that the process is not in control.
xbar pl ot ( DATA, conf ) allows control of the confidence level of the upper and lower plotted confidencelimits. The default conf \(=0.9973\) produces three-sigma limits.
```

normm nv(1- (1-.9973)/2)

```
ans \(=\)

\section*{3}

To get k-sigma limits, use the expression 1- 2* (1-nor medf (k) ). For example, the correct conf value for 2 -sigma limits is 0.9545 , as shown below.
```

k = 2;
1-2*(1-normadf(k))
ans =
0.9545

```
xbar pl ot (DATA, conf, specs) plots the specification limits in the two element vector specs.
xbar pl ot (DATA, conf, specs, ' si gmaest') specifies how xbar pl ot should estimate the standard deviation. Acceptable values are:
- 's' - use the average of the group standard deviations (default)
- ' v' - use the square root of a pooled variance estimate
- ' \(r\) ' - use the average range with each group; requires 25 or fewer observations per group
[ outlier,h] = xbar pl ot (DATA, conf, specs) returns out I i er, a vector of indices to the rows where the mean of DATA is out of control, and h , a vector of handles to the plotted lines.

\section*{Example}

Plot an x-bar chart of measurements on newly machined parts, taken at one hour intervals for 36 hours. Each row of the runout matrix contains the measurements for four parts chosen at random. The values indicate, in thousandths of an inch, the amount the part radius differs from the target radius.
```

load parts
xbar pl ot(runout, 0. 999, [-0.5 0.5])

```


The points in groups 21 and 25 are out of control, so the mean in those groups was higher than would be expected by random chance al one. There is evidence that the process was not in control when those measurements were collected.

\section*{x barplot}

\author{
See Also \\ capapl ot, hi stfit, ewripl ot, schart
}
Purpose Standardized Z score.

\section*{Syntax \\ Z = zscore( D)}

Description
\(Z=z s c o r e(D)\) returns the deviation of each column of \(D\) from its mean, normalized by its standard deviation. This is known as the \(Z\) score of \(D\).

For column vector V , the Z score is \(\mathrm{Z}=(\mathrm{V}\) - mean \((\mathrm{V})\) ). / st \(\mathrm{d}(\mathrm{V})\).

\section*{Purpose \\ Hypothesis testing for the mean of one sample with known variance.}

\section*{Syntax \\ Description}
h = zt est ( \(x, m\) si gma)
\(h=z t\) est ( \(x\), m si gma, al pha)
[ h, si g, ci , zval ] = zt est (x, m, si gma, al pha, tail)
h = zt est ( x , m, si gma) performs a Z test at significance level 0.05 to determine whether a sample x from a normal distribution with standard deviation si gnm could have mean \(m\)
\(h=z t\) est ( \(x\), m si gma, al pha) gives control of thesignificancelevel al pha. F or example, if al pha \(=0.01\) and the result is \(h=1\), you can reject the null hypothesis at the significance level 0.01 . If \(\mathrm{h}=0\), you cannot reject the null hypothesis at the al pha level of significance.
[ h, si g, ci ] = zt est ( \(\mathrm{x}, \mathrm{m}\) si gna, al pha, t ai I) allows specification of one or two-tailed tests, where tail is a flag that specifies one of three alternative hypotheses:
- tail = 0 specifies the alternative \(\mathrm{x} \neq \mathrm{m}\) (default)
- tail \(=1\) specifies the alternative \(\bar{x}>m\)
- tail \(=-1\) specifies the alternative \(\bar{x}<m\)
\(z v a l\) is the value of the \(Z\) statistic
\[
z=\frac{x-m}{\sigma / \sqrt{n}}
\]
where n is the number of observations in the sample.
si g is the probability that the observed value of \(Z\) could be as large or larger by chance under the null hypothesis that the mean of \(x\) is equal to \(m\).
ci is a 1-al pha confidence interval for the true mean.

\section*{Example}

This example generates 100 normal random numbers with theoretical mean zero and standard deviation one. The observed mean and standard deviation are different from their theoretical values, of course. We test the hypothesis that there is no true difference.
```

$x=\operatorname{normnd}(0,1,100,1) ;$
$\mathrm{m}=\operatorname{mean}(\mathrm{x})$
$\mathrm{m}=$
0. 0727
[h, si g, ci] = ztest(x, 0, 1)
$\mathrm{h}=$
0
si $g=$
0. 4669
$\mathrm{Ci}=$
-0. $1232 \quad 0.2687$

```

The result, \(\mathrm{h}=0\), means that we cannot reject the null hypothesis. The significance level is 0.4669 , which means that by chance we would have observed values of \(Z\) more extreme than the one in this example in 47 of 100 similar experiments. A 95\% confidence interval on the mean is [-0.1232 0.2687], which includes the theoretical (and hypothesized) mean of zero.
ztest

\section*{A}
absolute deviation 1-45
additive effects 1-73
alternative hypothesis 1-105
analysis of variance 1-23
ANOVA 1-68
anoval 2-12, 2-17, 2-160, 2-190
anova2 2-12, 2-23, 2-27, 2-102, 2-106
aoct ool 1-153
averagelinkage 2-179

\section*{B}
bacteria counts 1-69
barttest 2-14
baseball odds 2-45, 2-47
Bernoulli random variables 2-49
beta distribution 1-12, 1-13
bet acdf 2-4, 2-37
bet afit 2-4, 2-38
bet ai nv 2-6, 2-40
bet al i ke 2-4, 2-41
bet apdf 2-5, 2-42
bet ar nd 2-7, 2-43
bet ast at 2-9, 2-44
bi nocdf 2-4, 2-45
bi nofit 2-4, 2-46
bi noi nv 2-6, 2-47
binomial distribution 1-12, 1-15
bi nopdf 2-5, 2-48
bi nornd 2-7, 2-49
bi nost at 2-9, 2-50
boot st rap 2-51
bootstrap sampling 1-50
box plots 1-128
boxpl ot 2-11, 2-54

\section*{C}
capability studies 1-141
capabl e 2-11, 2-56
capapl ot 2-11
caser ead 2-14, 2-60
casewrite 2-14, 2-61
cdf 1-6, 1-7
cdf 2-4, 2-62
census 2-15
Central Limit Theorem 1-32
centroid linkage 2-179
Chatterjee and Hadi example 1-85
chi 2cdf 2-4, 2-65
chi 2 i nv 2-6, 2-66
chi 2pdf 2-5, 2-67
chi 2 rnd 2-8, 2-68
chi 2stat 2-9, 2-69
chi-square distribution 1-12, 1-17
circuit boards 2-48
citi es 2-15
City Block metric
in cluster analysis 2-256
cl assify 2-70
cl uster 2-12, 2-71
cluster analysis 1-53
computing inconsistency coefficient 1-60, 2-155
creating clusters from data 2-73
creating clusters from I i nkage output 1-64, 2-71
creating the cluster tree 1-56, 2-178
determining proximity 1-54, 2-255
evaluating cluster formation 1-59, 2-76
formatting distance information 1-56, 2-308
overview 1-53
plotting the cluster tree 1-58, 2-85
cl ust er dat a 2-12, 2-73
coin 2-122
contbnk 2-75
complete linkage 2-179
confidence intervals
hypothesis tests 1-106
nonlinear regression 1-103
control charts 1-138
EWMA charts 1-140
S charts 1-139
Xbar charts 1-138
conventions in our documentation (table) xviii
cophenet 2-12, 2-76
using 1-59
cophenetic correlation coefficient 2-76
defined 1-59
cor dexch 2-13, 2-78
corrcoef 2-79
cov 2-80
Cp index 1-142, 2-56
Cpk index 1-142, 2-56
crosst ab 2-81
cumulative distribution function (cdf) 1-6

\section*{D}
data 2-3
daugment 2-13, 2-83
dcovary 2-13, 2-84
demos 1-153, 2-3
design of experiments 1-170
polynomial curve fitting 1-156
probability distributions 1-154
random number generation 1-169
dendr ogr am2-12, 2-85, 2-194
using 1-58
depth
in cluster analysis 1-61
descriptive statistics 1-43, 2-3
Design of Experiments 1-143
D-optimal designs 1-147
fractional factorial designs 1-145
full factorial designs 1-144
discrete uniform distribution 1-12, 1-20
di scrim2-15
dissimilarity matrix
creating 1-54
distributions 1-2, 1-5
di sttool 1-153, 2-15, 2-87
DOE. SeDesign of Experiments
D-optimal designs 1-147
dummyar 2-88

\section*{E}
erf 1-32
error function 1-32
errorbar 2-11, 2-89
estimate 1-157
Euclidean distance
in cluster analysis 2-256
EWMA charts 1-140
ewrapl ot 2-11, 2-90
expcdf 2-4, 2-92
expfit 2-4, 2-93
expi nv 2-7, 2-94
exponential distribution 1-12, 1-21
exppdf 2-5, 2-95
exprnd 2-8, 2-96
expstat 2-9, 2-97
extrapolated 2-272

\section*{F}

F distribution 1-12, 1-23
F statistic 1-85
f cdf 2-5, 2-98
ff 2n 2-13, 2-99
file I/O 2-3
finv 2-7, 2-100
floppy disks 2-149
f pdf 2-6, 2-101
fractional factorial designs 1-145
frnd 2-8, 2-110
fstat 2-9, 2-111
f surf ht 2-11, 2-112
full factorial designs 1-144
ful If act 2-13, 2-114
furthest neighbor linkage 2-179

\section*{G}
ganedf 2-5, 2-115
ganfit 2-4, 2-116
gami nv 2-7, 2-117
gami i ke 2-4, 2-118
gamma distribution 1-12, 1-25
gampdf 2-6, 2-119
gamr nd 2-8, 2-120
ganst at 2-9, 2-121
gas 2-15
Gaussian 2-146
geocdf 2-5, 2-122
geoi nv 2-7, 2-123
geomean 2-10, 2-124
geometric distribution 1-12, 1-27
geopdf 2-6, 2-125
geor nd 2-8, 2-126
geostat 2-9, 2-127
gl i ne 2-11, 2-128
gname 2-11, 2-135, 2-137
grouped scatter plot 1-122
grpstats 2-139, 2-142, 2-143
Guinness beer 1-37, 2-316

\section*{H}
hadamard 2-14
hal d 2-15
har mean 2-10, 2-145
hat matrix 1-83
hi st 2-146
histfit 2-11, 2-147
histogram 1-169
hogg 2-15
Hotelling's T squared 1-121
hougen 2-148
Hougen-Watson model 1-100
hygecdf 2-5, 2-149
hygei nv 2-7, 2-150
hygepdf 2-6, 2-151
hyger nd 2-8, 2-152
hygest at 2-9, 2-153
hypergeometric distribution 1-12, 1-28
hypotheses 1-23, 2-3
hypothesis tests 1-105

\section*{I}
i cdf 2-154
incomplete beta function 1-13
incomplete gamma function 1-25
inconsistency coefficient 1-61
i nconsi st ent 2-12, 2-155
using 1-61
inspector 2-259
interaction 1-74
interpolated 2-311
interquartile range (iqr) 1-45
inverse cdf 1-6, 1-8
i qr 2-10, 2-157

\section*{K}
kurtosis 2-10, 2-172

\section*{L}

I awdat a 2-15
least squares 2-267
I ever age 2-174
light bulbs, life of 2-94
likelihood function 2-42
linear 2-3
linear models 1-68
I i nkage 2-12, 2-175, 2-178
using 1-56
I ogncdf 2-5, 2-181
I ogni nv 2-7, 2-182
lognormal distribution 1-12, 1-30
I ognpdf 2-6, 2-184
। ognr nd 2-8, 2-185
l ognst at 2-9, 2-186
lottery 2-331
I sli ne 2-11, 2-187
LU factorizations 2-266

\section*{M}
mad 2-10, 2-188
mahal 2-189
Mahal anobis distance 2-189
in cluster analysis 2-256
mean 1-6, 1-11
nean 2-10, 2-196
Mean Squares (MS) 2-17
measures of central tendency 1-43
measures of dispersion 1-45
medi an 2-10, 2-197
mil leage 2-15
Minkowski metric
in cluster analysis 2-256
nh e 2-4, 2-198
models
linear 1-68
nonlinear 1-100
moment 2-10, 2-199
M onte Carlo simulation 2-157
noore 2-15
multiple linear regression 1-82
multivariate statistics 1-112
mvnr nd 2-130, 2-200, 2-207, 2-293

\section*{N}
nanmax 2-10, 2-209
nanmean 2-10, 2-210
nanmedi an 2-10, 2-211
nanmin 2-10, 2-212
NaNs 1-46
nanst d 2-10, 2-213
nansum2-10, 2-214
nbi ncdf 2-5, 2-215
nbi ni nv 2-7, 2-216
nbi npdf 2-6, 2-217
nbi nrnd 2-8, 2-218
nbi nst at 2-9, 2-219
ncf cdf 2-5, 2-220
ncfi nv 2-7, 2-222
ncf pdf 2-6, 2-223
ncfrnd 2-8, 2-224
ncf st at 2-9, 2-225
nct cdf 2-5, 2-226
nct i nv 2-7, 2-227
nct pdf 2-6, 2-228
nct r nd 2-8, 2-229
nct st at 2-9, 2-230
ncx2cdf 2-5, 2-231
ncx2i nv 2-7, 2-233
ncx2pdf 2-6, 2-234
ncx2rnd 2-8, 2-235
ncx2st at 2-9, 2-236
nearest neighbor linkage 2-179
negative binomial distribution 1-12, 1-31
Newton's method 2-117
nl i nfit 2-13, 2-237
nl i nt ool 1-153, 2-13, 2-238
nl parci 2-13, 2-239
nl predci 2-13, 2-240
noncentral chi-square distribution 1-12
noncentral \(F\) distribution 1-12, 1-24
noncentral \(t\) distribution 1-12, 1-38
nonlinear 2-3
nonlinear regression models 1-100
normal distribution 1-12, 1-32
normal probability plots 1-128, 1-129
normalizing a dataset 1-55
using zscore 2-353
nor medf 2-5, 2-242
nor mdemo 2-11, 2-249
nor mfit 2-4, 2-243
norminv 2-7, 2-244
nor mi ke 2-4
nor mpdf 2-6, 2-245
nor mpl ot 2-11, 2-246
nor mrnd 2-8, 2-248
normst at 2-9, 2-250
notches 2-54
null 1-105
null hypothesis 1-105

\section*{0}
one-way analysis of variance (ANOVA) 1-68
outliers 1-44

\section*{P}
par et o 2-11, 2-251
parts 2-15
Pascal, Blaise 1-15
PCA. SeePrincipal Components Analysis
pcacov 2-14, 2-252
pcares 2-14, 2-253
pdf 1-6
pdf 2-254
pdi st 2-12, 2-255
using 1-54
percentiles 1-49
per \(п\) м 2-258
plots 1-49, 2-3
poi sscdf 2-5, 2-259
poi ssfit 2-4, 2-261
poi ssi nv 2-7, 2-262
Poisson distribution 1-12, 1-34
poi sspdf 2-6, 2-263
poi ssrnd 2-8, 2-264
poi sst at 2-9, 2-265
pol yconf 2-13, 2-266
pol ydat a 2-16
pol yfit 2-13, 2-267
polynomial 1-156
pol yt ool 1-153, 2-15, 2-33, 2-268
pol yval 2-13, 2-269
popcorn 2-25, 2-108
popcorn 2-15
prctile 2-10, 2-270
Principal Components Analysis 1-112
component scores 1-117
component variances 1-120
H otelling's T squared 1-121
Scree plot 1-120
pri ncomp 2-14, 2-271
probability 2-3
probability density function (pdf) 1-6
probability distributions 1-5
p-value 1-75, 1-106

\section*{Q}
qqpl ot 2-11, 2-272
QR decomposition 1-83
quality assurance 2-48
quantilequantile plots 1-128, 1-131

\section*{R}
random2-274
random number generator 1-6
random numbers 1-9
randt ool 1-153, 2-15, 2-87, 2-275
range 2-10, 2-276
ranksum2-14, 2-277
r ayl cdf 2-5, 2-278
Rayleigh distribution 1-12
rayl i nv 2-7, 2-279
r ayl pdf 2-6, 2-280
rayl rnd 2-8, 2-281
rayl st at 2-9, 2-282
rcopl ot 2-11, 2-283
reacti on 2-16
ref cur ve 2-11, 2-284
reference lines 1-154
references 1-175
refline 2-11, 2-285
regress 2-13, 2-286
regression 1-23
nonlinear 1-100
stepwise 1-88
regstats 2-288
relative efficiency 2-157
residuals 1-86
Response Surface M ethodology (RSM) 1-86
ri dge 2-13, 2-290
robust 1-44
robust linear fit 2-272
r owexch 2-14, 2-297
rsmdemo 1-170
rsmdemo 1-153, 2-15, 2-129, 2-292, 2-298
R-square 1-85
rst ool 1-153, 2-13, 2-299

\section*{S}

S charts 1-139
sat 2-16
schart 2-12, 2-300
Scree plot 1-120
segmentation analysis 1-53
significance level 1-105
si gnrank 2-14, 2-302
si gnt est 2-14, 2-304
similarity matrix
creating 1-54
simulation 2-157
single linkage 2-179
skewness 1-129
skewness 2-10, 2-306
SPC. Se Statistical Process Control
squar ef or m2-12, 2-308
standard normal 2-245
Standardized Euclidean distance
in cluster analysis 2-256
statistical plots 1-128
Statistical Process Control
capability studies 1-141
control charts 1-138
statistical references 1-175
statistically significant 2-17, 2-160, 2-190
std 2-10
st epwi se 1-153, 2-13, 2-310
stepwise regression 1-88
Sum of Squares (SS) 2-17
surfht 2-11, 2-311
symmetric 2-115

\section*{T}
t distribution 1-12, 1-37
t abul at e 2-312
taxonomy analysis 1-53
\(t\) bl read 2-15, 2-313
tbl write 2-15, 2-315
t cdf 2-5, 2-316
ti nv 2-7, 2-319
\(t\) pdf 2-6, 2-320
t ri mean 2-10, 2-321
trnd 2-8, 2-322
tstat 2-9, 2-323
ttest 2-14, 2-324
ttest 2 2-14, 2-326
two-way ANOVA 1-73

\section*{U}
unbiased 2-309, 2-339
uni dcdf 2-5, 2-328
uni di nv 2-7, 2-329
uni dpdf 2-6, 2-330
uni dr nd 2-8, 2-331
uni dstat 2-9, 2-332
uni \(f\) cdf 2-5, 2-333
uni fi nv 2-7, 2-334
unifit 2-4, 2-335
uniform distribution 1-12, 1-39
uni \(f\) pdf 2-6, 2-336
uni frnd 2-8, 2-337
unif \(f\) tat 2-9, 2-338

\section*{V}
var 2-10, 2-339
variance 1-6, 1-11

\section*{W}
ward linkage 2-180
wei bcdf 2-5, 2-341
wei bf it 2-342
wei bi nv 2-7, 2-343
wei bl \(i\) ke 2-344
wei bpdf 2-6, 2-345
wei bpl ot 2-11, 2-346
wei br nd 2-8, 2-347
wei bstat 2-9, 2-348
Weibull distribution 1-12, 1-40
Weibull probability plots 1-133
Weibull, Waloddi 1-40
whiskers 1-129, 2-54
```

X
x2f x 2-349
Xbar charts 1-138
xbarpl ot 2-12, 2-350

```

\section*{Z}
zscore 2-353
zt est 2-14, 2-354```


[^0]:    See Also
    bet acdf, bet af it, bet ai nv, bet al i ke, bet apdf, bet ar nd

[^1]:    See Also
    bi nocdf, bi nof it, bi noi nv, bi nor nd, bi nost at, pdf

