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Preface

Overview

This chapter introduces the Statistics Toolbox, and explains how to use the
documentation. It contains the following sections:

< “What Is the Statistics Toolbox?”

= “How to Use This Guide”

=« “Related Products List”

< “Mathematical Notation”

= “Typographical Conventions”

Xii



What Is the Statistics Toolbox?

What Is the Statistics Toolbox?

The Statistics Toolbox is a collection of tools built on the MATLAB numeric
computing environment. The toolbox supports a wide range of common
statistical tasks, from random number generation, to curve fitting, to design of
experiments and statistical process control. The toolbox provides two
categories of tools:

= Building-block probability and statistics functions
« Graphical, interactive tools

The first category of tools is made up of functions that you can call from the
command line or from your own applications. Many of these functions are
MATLAB M-files, series of MATLAB statements that implement specialized
statistics algorithms. You can view the MATLAB code for these functions using
the statement

type function_name

You can change the way any toolbox function works by copying and renaming
the M-file, then modifying your copy. You can also extend the toolbox by adding
your own M-files.

Secondly, the toolbox provides a number of interactive tools that let you access
many of the functions through a graphical user interface (GUI). Together, the
GUI-based tools provide an environment for polynomial fitting and prediction,
as well as probability function exploration.

Xiii
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How to Use This Guide

Xiv

If you are a new user begin with Chapter 1, “Tutorial.” This chapter
introduces the MATLAB statistics environment through the toolbox functions.
It describes the functions with regard to particular areas of interest, such as
probability distributions, linear and nonlinear models, principal components
analysis, design of experiments, statistical process control, and descriptive
statistics.

All toolbox users should use Chapter 2, “Reference,” for information about
specific tools. For functions, reference descriptions include a synopsis of the
function’s syntax, as well as a complete explanation of options and operation.
Many reference descriptions also include examples, a description of the
function’s algorithm, and references to additional reading material.

Use this guide in conjunction with the software to learn about the powerful
features that MATLAB provides. Each chapter provides numerous examples
that apply the toolbox to representative statistical tasks.

The random number generation functions for various probability distributions
are based on all the primitive functions, randn and rand. There are many
examples that start by generating data using random numbers. To duplicate
the results in these examples, first execute the commands below.

seed = 931316785;
rand("seed”,seed);
randn("seed” ,seed);

You might want to save these commands in an M-file script called init.m.
Then, instead of three separate commands, you need only type init.



Related Products List

Related Products List

The MathWorks provides several products that are especially relevant to the
kinds of tasks you can perform with the Statistics Toolbox.

For more information about any of these products, see either:

= The online documentation for that product if it is installed or if you are
reading the documentation from the CD

< The MathWorks Web site, at http://www_mathworks.com; see the “products”

section

Note The toolboxes listed below all include functions that extend MATLAB's
capabilities. The blocksets all include blocks that extend Simulink’s

capabilities.

Product

Description

Data Acquisition Toolbox

Database Toolbox

Financial Time Series
Toolbox

GARCH Toolbox

Image Processing
Toolbox

Mapping Toolbox

MATLAB functions for direct access to live,
measured data from MATLAB

Tool for connecting to, and interacting with,
most ODBC/JDBC databases from within
MATLAB

Tool for analyzing time series data in the
financial markets

MATLAB functions for univariate Generalized
Autoregressive Conditional Heteroskedasticity
(GARCH) volatility modeling

Complete suite of digital image processing and
analysis tools for MATLAB

Tool for analyzing and displaying
geographically based information from within
MATLAB

XV
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Product

Description

Neural Network Toolbox

Optimization Toolbox

Signal Processing
Toolbox

System ldentification
Toolbox

Comprehensive environment for neural
network research, design, and simulation
within MATLAB

Tool for general and large-scale optimization of
nonlinear problems, as well as for linear
programming, quadratic programming,
nonlinear least squares, and solving nonlinear
equations

Tool for algorithm development, signal and
linear system analysis, and time-series data
modeling

Tool for building accurate, simplified models of
complex systems from noisy time-series data




Mathematical Notation

Mathematical Notation

This manual and the Statistics Toolbox functions use the following
mathematical notation conventions.

B
E(X)
f(x]a,b)

F(x]a,b)

I([a, b]) or
Ifa, b]

p and q

Parameters in a linear model.
Expected value of x. E(x) = jtf(t)dt

Probability density function. x is the independent variable;
a and b are fixed parameters.

Cumulative distribution function.

Indicator function. In this example the function takes the
value 1 on the closed interval from a to b and is O
elsewhere.

p is the probability of some event.
g is the probability of ~p, so g = 1-p.

XVii
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Typographical Conventions

This manual uses some or all of these conventions.

Item

Convention to Use

Example

Example code

Function names/syntax

Keys

Literal strings (in syntax
descriptions in reference
chapters)

Mathematical
expressions

MATLAB output

Menu names, menu items, and
controls

New terms

String variables (from a finite
list)

Monospace font

Monospace font

Boldface with an initial
capital letter

Monospace bold for
literals

Italics for variables

Standard text font for
functions, operators, and
constants

Monospace font

Boldface with an initial
capital letter

Italics

Monospace italics

To assign the value 5 to A,
enter

A =5

The cos function finds the
cosine of each array element.

Syntax line example is

MLGetVar ML_var_name

Press the Return key.

f = freqgspace(n, "whole™)

This vector represents the
polynomial

p:x2+2x+3

MATLAB responds with

A =
5

Choose the File menu.

An array is an ordered
collection of information.

sysc = d2c(sysd, "method")
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1 Tutorial

Introduction

The Statistics Toolbox, for use with MATLAB, supplies basic statistics
capability on the level of a first course in engineering or scientific statistics.
The statistics functions it provides are building blocks suitable for use inside
other analytical tools.

Primary Topic Areas
The Statistics Toolbox has more than 200 M-files, supporting work in the
topical areas below:

= Probability distributions

<« Descriptive statistics

=« Cluster analysis

= Linear models

< Nonlinear models

= Hypothesis tests

< Multivariate statistics

= Statistical plots

= Statistical process control

= Design of experiments

Probability Distributions

The Statistics Toolbox supports 20 probability distributions. For each
distribution there are five associated functions. They are:

< Probability density function (pdf)

= Cumulative distribution function (cdf)

= Inverse of the cumulative distribution function

= Random number generator

< Mean and variance as a function of the parameters

For data-driven distributions (beta, binomial, exponential, gamma, normal,
Poisson, uniform, and Weibull), the Statistics Toolbox has functions for
computing parameter estimates and confidence intervals.

1-2
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Descriptive Statistics

The Statistics Toolbox provides functions for describing the features of a data
sample. These descriptive statistics include measures of location and spread,
percentile estimates and functions for dealing with data having missing
values.

Cluster Analysis

The Statistics Toolbox provides functions that allow you to divide a set of
objects into subgroups, each having members that are as much alike as
possible. This process is called cluster analysis.

Linear Models

In the area of linear models, the Statistics Toolbox supports one-way, two-way,
and higher-way analysis of variance (ANOVA), analysis of covariance
(ANOCOVA), multiple linear regression, stepwise regression, response surface
prediction, ridge regression, and one-way multivariate analysis of variance
(MANOVA). It supports nonparametric versions of one- and two-way ANOVA.
It also supports multiple comparisons of the estimates produced by ANOVA
and ANOCOVA functions.

Nonlinear Models

For nonlinear models, the Statistics Toolbox provides functions for parameter
estimation, interactive prediction and visualization of multidimensional
nonlinear fits, and confidence intervals for parameters and predicted values.

Hypothesis Tests

The Statistics Toolbox also provides functions that do the most common tests
of hypothesis — t-tests, Z-tests, nonparametric tests, and distribution tests.

Multivariate Statistics

The Statistics Toolbox supports methods in multivariate statistics, including
principal components analysis, linear discriminant analysis, and one-way
multivariate analysis of variance.

1-3
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Statistical Plots

The Statistics Toolbox adds box plots, normal probability plots, Weibull
probability plots, control charts, and quantile-quantile plots to the arsenal of
graphs in MATLAB. There is also extended support for polynomial curve fitting
and prediction. There are functions to create scatter plots or matrices of scatter
plots for grouped data, and to identify points interactively on such plots. There
is a function to interactively explore a fitted regression model.

Statistical Process Control (SPC)

For SPC, the Statistics Toolbox provides functions for plotting common control
charts and performing process capability studies.

Design of Experiments (DOE)

The Statistics Toolbox supports full and fractional factorial designs and
D-optimal designs. There are functions for generating designs, augmenting
designs, and optimally assigning units with fixed covariates.



Probability Distributions

Probability Distributions

Probability distributions arise from experiments where the outcome is subject
to chance. The nature of the experiment dictates which probability
distributions may be appropriate for modeling the resulting random outcomes.
There are two types of probability distributions — continuous and discrete.

Continuous (data) Continuous (statistics) Discrete

Beta Chi-square Binomial
Exponential Noncentral Chi-square Discrete Uniform
Gamma F Geometric
Lognormal Noncentral F Hypergeometric
Normal t Negative Binomial
Rayleigh Noncentral t Poisson

Uniform

Weibull

Suppose you are studying a machine that produces videotape. One measure of
the quality of the tape is the number of visual defects per hundred feet of tape.
The result of this experiment is an integer, since you cannot observe 1.5
defects. To model this experiment you should use a discrete probability
distribution.

A measure affecting the cost and quality of videotape is its thickness. Thick
tape is more expensive to produce, while variation in the thickness of the tape
on the reel increases the likelihood of breakage. Suppose you measure the
thickness of the tape every 1000 feet. The resulting numbers can take a
continuum of possible values, which suggests using a continuous probability
distribution to model the results.

Using a probability model does not allow you to predict the result of any
individual experiment but you can determine the probability that a given
outcome will fall inside a specific range of values.

1-5



1 Tutorial

1-6

This following two sections provide more information about the available
distributions:

= “Overview of the Functions”

= “Overview of the Distributions”

Overview of the Functions

MATLAB provides five functions for each distribution, which are discussed in
the following sections:

= “Probability Density Function (pdf)”

=« “Cumulative Distribution Function (cdf)”

= “Inverse Cumulative Distribution Function”

< “Random Number Generator”

= “Mean and Variance as a Function of Parameters”

Probability Density Function (pdf)

The probability density function (pdf) has a different meaning depending on
whether the distribution is discrete or continuous.

For discrete distributions, the pdf is the probability of observing a particular
outcome. In our videotape example, the probability that there is exactly one
defect in a given hundred feet of tape is the value of the pdf at 1.

Unlike discrete distributions, the pdf of a continuous distribution at a value is
not the probability of observing that value. For continuous distributions the
probability of observing any particular value is zero. To get probabilities you
must integrate the pdf over an interval of interest. For example the probability
of the thickness of a videotape being between one and two millimeters is the
integral of the appropriate pdf from one to two.

A pdf has two theoretical properties:

= The pdf is zero or positive for every possible outcome.
= The integral of a pdf over its entire range of values is one.
A pdf is not a single function. Rather a pdf is a family of functions characterized

by one or more parameters. Once you choose (or estimate) the parameters of a
pdf, you have uniquely specified the function.



Probability Distributions

The pdf function call has the same general format for every distribution in the
Statistics Toolbox. The following commands illustrate how to call the pdf for
the normal distribution.

x = [-3:0.1:3];
f = normpdf(x,0,1);

The variable f contains the density of the normal pdf with parameters u=0 and
o0=1 at the values in x. The first input argument of every pdf is the set of values
for which you want to evaluate the density. Other arguments contain as many
parameters as are necessary to define the distribution uniquely. The normal
distribution requires two parameters; a location parameter (the mean, ) and
a scale parameter (the standard deviation, o).

Cumulative Distribution Function (cdf)

If f is a probability density function for random variable X, the associated
cumulative distribution function (cdf) F is

F(x) = P(X<X) = f f(t)dt

—00

The cdf of a value x, F(x), is the probability of observing any outcome less than
or equal to x.

A cdf has two theoretical properties:

< The cdf ranges from 0 to 1.
= Ify > X, then the cdf of y is greater than or equal to the cdf of x.

The cdf function call has the same general format for every distribution in the
Statistics Toolbox. The following commands illustrate how to call the cdf for the
normal distribution.

[-3:0.1:3];
normcdf(x,0,1);

X
p

The variable p contains the probabilities associated with the normal cdf with
parameters u=0 and o=1 at the values in x. The first input argument of every
cdf is the set of values for which you want to evaluate the probability. Other
arguments contain as many parameters as are necessary to define the
distribution uniquely.

1-7
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Inverse Cumulative Distribution Function
The inverse cumulative distribution function returns critical values for
hypothesis testing given significance probabilities. To understand the
relationship between a continuous cdf and its inverse function, try the
following:

X = [-3:0.1:3];

xnew = norminv(normcdf(x,0,1),0,1);

How does xnew compare with x? Conversely, try this:
p =1[0.1:0.1:0.9];
pnew = normcdf(norminv(p,0,1),0,1);

How does pnew compare with p?

Calculating the cdf of values in the domain of a continuous distribution returns
probabilities between zero and one. Applying the inverse cdf to these
probabilities yields the original values.

For discrete distributions, the relationship between a cdf and its inverse
function is more complicated. It is likely that there is no x value such that the
cdf of x yields p. In these cases the inverse function returns the first value x
such that the cdf of x equals or exceeds p. Try this:

x = [0:10];
y = binoinv(binocdf(x,10,0.5),10,0.5);

How does x compare with y?

The commands below illustrate the problem with reconstructing the
probability p from the value x for discrete distributions.

p =[0-1:0.2:0.9];
pnew = binocdf(binoinv(p,10,0.5),10,0.5)

pnew =
0.1719 0.3770 0.6230 0.8281 0.9453

The inverse function is useful in hypothesis testing and production of
confidence intervals. Here is the way to get a 99% confidence interval for a
normally distributed sample.
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p = [0.005 0.995];
X = norminv(p,0,1)
X =

-2.5758 2.5758

The variable x contains the values associated with the normal inverse function
with parameters p=0 and o=1 at the probabilities in p. The difference
p(2)-p(1) is 0.99. Thus, the values in x define an interval that contains 99%
of the standard normal probability.

The inverse function call has the same general format for every distribution in
the Statistics Toolbox. The first input argument of every inverse function is the
set of probabilities for which you want to evaluate the critical values. Other
arguments contain as many parameters as are necessary to define the
distribution uniquely.

Random Number Generator

The methods for generating random numbers from any distribution all start
with uniform random numbers. Once you have a uniform random number
generator, you can produce random numbers from other distributions either
directly or by using inversion or rejection methods, described below. See
“Syntax for Random Number Functions” on page 1-10 for details on using
generator functions.

Direct. Direct methods flow from the definition of the distribution.

As an example, consider generating binomial random numbers. You can think
of binomial random numbers as the number of heads in n tosses of a coin with
probability p of a heads on any toss. If you generate n uniform random numbers
and count the number that are greater than p, the result is binomial with
parameters n and p.

Inversion. The inversion method works due to a fundamental theorem that
relates the uniform distribution to other continuous distributions.

If F is a continuous distribution with inverse F "1, and U is a uniform random
number, then F "1(U) has distribution F.

So, you can generate a random number from a distribution by applying the
inverse function for that distribution to a uniform random number.
Unfortunately, this approach is usually not the most efficient.

1-9
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Rejection. The functional form of some distributions makes it difficult or time
consuming to generate random numbers using direct or inversion methods.
Rejection methods can sometimes provide an elegant solution in these cases.

Suppose you want to generate random numbers from a distribution with pdf f.
To use rejection methods you must first find another density, g, and a
constant, c, so that the inequality below holds.

f(x) <cg(x)Ox
You then generate the random numbers you want using the following steps:

1 Generate a random number x from distribution G with density g.

2 Form the ratior = M
f(x)

3 Generate a uniform random number u.
4 If the product of u and r is less than one, return x.

5 Otherwise repeat steps one to three.

For efficiency you need a cheap method for generating random numbers
from G, and the scalar ¢ should be small. The expected number of iterations
is c.

Syntax for Random Number Functions. You can generate random numbers from
each distribution. This function provides a single random number or a matrix
of random numbers, depending on the arguments you specify in the function
call.

For example, here is the way to generate random numbers from the beta
distribution. Four statements obtain random numbers: the first returns a
single number, the second returns a 2-by-2 matrix of random numbers, and the
third and fourth return 2-by-3 matrices of random numbers.

= 1;

= 2;

[-1 .5; 1 2];
[-25 .75; 5 10];
= [2 3]:

nrow = 2;

ncol 3;

S Q0 09w
1
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rl = betarnd(a,b)

rl =

0.4469
r2 = betarnd(c,d)
r2 =

0.8931 0.4832
0.1316 0.2403

r3 = betarnd(a,b,m)
r3 =

0.4196 0.6078 0.1392
0.0410 0.0723 0.0782

r4 = betarnd(a,b,nrow,ncol)

0.0520 0.3975 0.1284
0.3891 0.1848 0.5186

Mean and Variance as a Function of Parameters

The mean and variance of a probability distribution are generally simple
functions of the parameters of the distribution. The Statistics Toolbox
functions ending in ""stat" all produce the mean and variance of the desired
distribution for the given parameters.

The example below shows a contour plot of the mean of the Weibull distribution
as a function of the parameters.

X (0.5:0.1:5);

y (1:0.04:2);

[X,Y] = meshgrid(x,y);

Z = weibstat(X,Y);

[c,h] = contour(x,y,Z,[0.4 0.6 1.0 1.8]);
clabel(c);

1-11
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Overview of the Distributions
The following sections describe the available probability distributions:

= “Beta Distribution” on page 1-13

< “Binomial Distribution” on page 1-15

= “Chi-Square Distribution” on page 1-17

=« “Noncentral Chi-Square Distribution” on page 1-18
= “Discrete Uniform Distribution” on page 1-20

= “Exponential Distribution” on page 1-21

<« “F Distribution” on page 1-23

= “Noncentral F Distribution” on page 1-24

< “Gamma Distribution” on page 1-25

= “Geometric Distribution” on page 1-27

= “Hypergeometric Distribution” on page 1-28

= “Lognormal Distribution” on page 1-30

= “Negative Binomial Distribution” on page 1-31

= “Normal Distribution” on page 1-32

= “Poisson Distribution” on page 1-34

= “Rayleigh Distribution” on page 1-35

= “Student’s t Distribution” on page 1-37

= “Noncentral t Distribution” on page 1-38

= “Uniform (Continuous) Distribution” on page 1-39
= “Weibull Distribution” on page 1-40
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Beta Distribution
The following sections provide an overview of the beta distribution.

Background on the Beta Distribution. The beta distribution describes a family of
curves that are unique in that they are nonzero only on the interval (0 1). A
more general version of the function assigns parameters to the end-points of
the interval.

The beta cdf is the same as the incomplete beta function.

The beta distribution has a functional relationship with the t distribution. If Y
is an observation from Student’s t distribution with v degrees of freedom, then
the following transformation generates X, which is beta distributed.

:%%L
v+Y2

X

. VARY;
if YOt(v) then X DB\E’ 5)
The Statistics Toolbox uses this relationship to compute values of the t cdf and

inverse function as well as generating t distributed random numbers.

Definition of the Beta Distribution. The beta pdf is

1
B(a, b)

y = f(x]a,b) = x* (1% 10,1)(%)
where B( - ) is the Beta function. The indicator function I g 1)(x) ensures that
only values of x in the range (0 1) have nonzero probability.

Parameter Estimation for the Beta Distribution. Suppose you are collecting data that
has hard lower and upper bounds of zero and one respectively. Parameter
estimation is the process of determining the parameters of the beta
distribution that fit this data best in some sense.

One popular criterion of goodness is to maximize the likelihood function. The
likelihood has the same form as the beta pdf. But for the pdf, the parameters
are known constants and the variable is x. The likelihood function reverses the
roles of the variables. Here, the sample values (the x’s) are already observed.
So they are the fixed constants. The variables are the unknown parameters.

1-13
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Maximum likelihood estimation (MLE) involves calculating the values of the
parameters that give the highest likelihood given the particular set of data.

The function betafit returns the MLEs and confidence intervals for the
parameters of the beta distribution. Here is an example using random numbers
from the beta distribution witha =5 and b =0.2.

r = betarnd(5,0.2,100,1);
[phat, pci] = betafit(r)

phat =

4.5330 0.2301

pci =

2.8051 0.1771
6.2610 0.2832

The MLE for parameter a is 4.5330, compared to the true value of 5. The 95%
confidence interval for a goes from 2.8051 to 6.2610, which includes the true
value.

Similarly the MLE for parameter b is 0.2301, compared to the true value of 0.2.
The 95% confidence interval for b goes from 0.1771 to 0.2832, which also
includes the true value. Of course, in this made-up example we know the “true
value.” In experimentation we do not.

Example and Plot of the Beta Distribution. The shape of the beta distribution is quite
variable depending on the values of the parameters, as illustrated by the plot
below.

25

2

15}

1

057t




Probability Distributions

The constant pdf (the flat line) shows that the standard uniform distribution is
a special case of the beta distribution.

Binomial Distribution
The following sections provide an overview of the binomial distribution.

Background of the Binomial Distribution. The binomial distribution models the total
number of successes in repeated trials from an infinite population under the
following conditions:

= Only two outcomes are possible on each of n trials.
= The probability of success for each trial is constant.
= All trials are independent of each other.

James Bernoulli derived the binomial distribution in 1713 (Ars Conjectandi).
Earlier, Blaise Pascal had considered the special case where p = 1/2.

Definition of the Binomial Distribution. The binomial pdf is
_ _ N x (1-x)
y = f(x|n,p) =, )P"q lo,1,...,mX)

n!

x—!(n.—x)! and q=1-p.

where br:) =

The binomial distribution is discrete. For zero and for positive integers less
than n, the pdf is nonzero.

Parameter Estimation for the Binomial Distribution. Suppose you are collecting data
from a widget manufacturing process, and you record the number of widgets
within specification in each batch of 100. You might be interested in the
probability that an individual widget is within specification. Parameter
estimation is the process of determining the parameter, p, of the binomial
distribution that fits this data best in some sense.

One popular criterion of goodness is to maximize the likelihood function. The
likelihood has the same form as the binomial pdf above. But for the pdf, the
parameters (n and p) are known constants and the variable is x. The likelihood
function reverses the roles of the variables. Here, the sample values (the x’s)
are already observed. So they are the fixed constants. The variables are the

1-15
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unknown parameters. MLE involves calculating the value of p that give the
highest likelihood given the particular set of data.

The function binofit returns the MLEs and confidence intervals for the
parameters of the binomial distribution. Here is an example using random
numbers from the binomial distribution with n =100 and p = 0.9.

binornd(100,0.9)

r
r =

88
[phat, pci] = binofit(r,100)
phat =

0.8800

pci =

0.7998
0.9364

The MLE for parameter p is 0.8800, compared to the true value of 0.9. The 95%
confidence interval for p goes from 0.7998 to 0.9364, which includes the true
value. Of course, in this made-up example we know the “true value” of p. In
experimentation we do not.

Example and Plot of the Binomial Distribution. The following commands generate a
plot of the binomial pdf for n =10 and p = 1/2.

x = 0:10;

y = binopdf(x,10,0.5);

plot(x,y,"+%)
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Chi-Square Distribution
The following sections provide an overview of the x? distribution.

Background of the Chi-Square Distribution. The X2 distribution is a special case of the

gamma distribution where b = 2 in the equation for gamma distribution below.

X

1 a-1_b
a e
b"Tr(a)

x

y = f(x]a,b) =

The x2 distribution gets special attention because of its importance in normal
sampling theory. If a set of n observations is normally distributed with
variance 62, and s? is the sample standard deviation, then

(n—l)s2
2

o

Ox*(n—-1)

The Statistics Toolbox uses the above relationship to calculate confidence

intervals for the estimate of the normal parameter 02in the function normfit.

1-17



1 Tutorial

1-18

Definition of the Chi-Square Distribution. The X2 pdf is

x(V=2)/2g7%/2
y = f(xjv) = ———

'
221 (v/2)
where I'( -) is the Gamma function, and v is the degrees of freedom.
Example and Plot of the Chi-Square Distribution. The )(2 distribution is skewed to the

right especially for few degrees of freedom (v). The plot shows the XZ
distribution with four degrees of freedom.

X 0:0.2:15;
y = chi2pdf(x,4);
plot(x,y)
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Noncentral Chi-Square Distribution
The following sections provide an overview of the noncentral 2 distribution.

Background of the Noncentral Chi-Square Distribution. The X2 distribution is actually
a simple special case of the noncentral chi-square distribution. One way to

generate random numbers with a x2 distribution (with v degrees of freedom) is
to sum the squares of v standard normal random numbers (mean equal to zero.)

What if we allow the normally distributed quantities to have a mean other than
zero? The sum of squares of these numbers yields the noncentral chi-square
distribution. The noncentral chi-square distribution requires two parameters;
the degrees of freedom and the noncentrality parameter. The noncentrality
parameter is the sum of the squared means of the normally distributed
guantities.
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The noncentral chi-square has scientific application in thermodynamics and
signal processing. The literature in these areas may refer to it as the Ricean or
generalized Rayleigh distribution.

Definition of the Noncentral Chi-Square Distribution. There are many equivalent
formulas for the noncentral chi-square distribution function. One formulation
uses a modified Bessel function of the first kind. Another uses the generalized
Laguerre polynomials. The Statistics Toolbox computes the cumulative
distribution function values using a weighted sum of X2 probabilities with the
weights equal to the probabilities of a Poisson distribution. The Poisson
parameter is one-half of the noncentrality parameter of the noncentral
chi-square.

o] _6 K

2 2

F(x|v,d) = Z i e Pr[xv+2jsx]
i=ol

where & is the noncentrality parameter.

Example of the Noncentral Chi-Square Distribution. The following commands generate
a plot of the noncentral chi-square pdf.

x = (0:0.1:10)";

pl = ncx2pdf(x,4,2);

p = chi2pdf(x,4);
plot(x,p,"--",Xx,pl,"-")
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Discrete Uniform Distribution
The following sections provide an overview of the discrete uniform distribution.

Background of the Discrete Uniform Distribution. The discrete uniform distribution is
a simple distribution that puts equal weight on the integers from one to N.

Definition of the Discrete Uniform Distribution. The discrete uniform pdf is
V= XIN) = S )00
N (L ....N)

Example and Plot of the Discrete Uniform Distribution. As for all discrete distributions,
the cdf is a step function. The plot shows the discrete uniform cdf for N = 10.

X = 0:10;

y = unidcdf(x,10);
stairs(x,y)

set(gca, "XIim",[0 11])

08¢
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To pick a random sample of 10 from a list of 553 items:

numbers = unidrnd(553,1,10)

numbers

293 372 5 213 37 231 380 326 515 468
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Exponential Distribution
The following sections provide an overview of the exponential distribution.

Background of the Exponential Distribution. Like the chi-square distribution, the
exponential distribution is a special case of the gamma distribution (obtained
by setting a = 1)

1 a-1_b

y = f(x|a,b) = 5
b"T(a)

where I'( - ) is the Gamma function.

The exponential distribution is special because of its utility in modeling events
that occur randomly over time. The main application area is in studies of
lifetimes.

Definition of the Exponential Distribution. The exponential pdf is

X

1__
= f(x ==e M
y = f(x|p) I

Parameter Estimation for the Exponential Distribution. Suppose you are stress testing
light bulbs and collecting data on their lifetimes. You assume that these
lifetimes follow an exponential distribution. You want to know how long you
can expect the average light bulb to last. Parameter estimation is the process
of determining the parameters of the exponential distribution that fit this data
best in some sense.

One popular criterion of goodness is to maximize the likelihood function. The
likelihood has the same form as the exponential pdf above. But for the pdf, the
parameters are known constants and the variable is x. The likelihood function
reverses the roles of the variables. Here, the sample values (the x’s) are already
observed. So they are the fixed constants. The variables are the unknown
parameters. MLE involves calculating the values of the parameters that give
the highest likelihood given the particular set of data.
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The function expfit returns the MLEs and confidence intervals for the
parameters of the exponential distribution. Here is an example using random
numbers from the exponential distribution with p = 700.

lifetimes = exprnd(700,100,1);
[muhat, muci] = expfit(lifetimes)

muhat =
672.8207
muci =

547.4338
810.9437

The MLE for parameter p is 672, compared to the true value of 700. The 95%
confidence interval for p goes from 547 to 811, which includes the true value.

In our life tests we do not know the true value of u so it is nice to have a
confidence interval on the parameter to give a range of likely values.

Example and Plot of the Exponential Distribution. For exponentially distributed
lifetimes, the probability that an item will survive an extra unit of time is
independent of the current age of the item. The example shows a specific case
of this special property.

1 = 10:10:60;
Ipd = 1+0.1;
deltap = (expcdf(Ipd,50)-expcdf(l,50))./(1-expcdf(l1,50))

deltap =
0.0020 0.0020 0.0020 0.0020 0.0020 0.0020

The plot below shows the exponential pdf with its parameter (and mean), y, set
to 2.

X = 0:0.1:10;
y = exppdf(x,2);
plot(x,y)
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F Distribution
The following sections provide an overview of the F distribution.

Background of the F distribution. The F distribution has a natural relationship with
the chi-square distribution. If X, and x, are both chi-square with v, and v,
degrees of freedom respectively, then the statistic F below is F distributed.

X1

v

F(vy,vy) = X—l
2

Vo

The two parameters, v, and v,, are the numerator and denominator degrees of
freedom. That is, v; and v, are the number of independent pieces information
used to calculate x; and X, respectively.

Definition of the F distribution. The pdf for the F distribution is

(Vi +Vy) v, -2

M —— Vi ——
2 Vi3 X

Vi v VitVe

rod 22 Vi 2
\2)'\2) {1+\V—2jx}

y = f(X|vyvy) =

where I'(-) is the Gamma function.

Example and Plot of the F distribution. The most common application of the F
distribution is in standard tests of hypotheses in analysis of variance and
regression.
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The plot shows that the F distribution exists on the positive real numbers and
is skewed to the right.

X = 0:0.01:10;
y = fpdf(x,5,3);
plot(x,y)
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Noncentral F Distribution
The following sections provide an overview of the noncentral F distribution.

Background of the Noncentral F Distribution. As with the )(2 distribution, the

F distribution is a special case of the noncentral F distribution. The

F distribution is the result of taking the ratio of two )(2 random variables each
divided by its degrees of freedom.

If the numerator of the ratio is a noncentral chi-square random variable
divided by its degrees of freedom, the resulting distribution is the noncentral
F distribution.

The main application of the noncentral F distribution is to calculate the power
of a hypothesis test relative to a particular alternative.

Definition of the Noncentral F Distribution. Similar to the noncentral x2 distribution,
the toolbox calculates noncentral F distribution probabilities as a weighted
sum of incomplete beta functions using Poisson probabilities as the weights.

1.1
°\3Y —S vk vy,
POz = X e e 2 g
ji=o\ Y
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I(x] a,b) is the incomplete beta function with parameters a and b, and d is the
noncentrality parameter.

Example and Plot of the Noncentral F Distribution. The following commands generate
a plot of the noncentral F pdf.

x = (0.01:0.1:10.01)";
pl = ncfpdf(x,5,20,10);
p = fpdf(x,5,20);

plot(x,p,"--",x,pl,"-")

0.8
| \
0.6 I \
| \
0.4f
| \
0.2 \
| N
~
0 — e —
0 2 4 6 8 10 12

Gamma Distribution
The following sections provide an overview of the gamma distribution.

Background of the Gamma Distribution. The gamma distribution is a family of
curves based on two parameters. The chi-square and exponential distributions,
which are children of the gamma distribution, are one-parameter distributions
that fix one of the two gamma parameters.

The gamma distribution has the following relationship with the incomplete
Gamma function.

r(x|a, b) = gammainckg, a

For b = 1 the functions are identical.

When a is large, the gamma distribution closely approximates a normal
distribution with the advantage that the gamma distribution has density only
for positive real numbers.
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Definition of the Gamma Distribution. The gamma pdf is

X
1 a-1_b
Py X e
b"T(a)

y = f(x]a,b) =

where I'( -) is the Gamma function.

Parameter Estimation for the Gamma Distribution. Suppose you are stress testing
computer memory chips and collecting data on their lifetimes. You assume that
these lifetimes follow a gamma distribution. You want to know how long you
can expect the average computer memory chip to last. Parameter estimation is
the process of determining the parameters of the gamma distribution that fit
this data best in some sense.

One popular criterion of goodness is to maximize the likelihood function. The
likelihood has the same form as the gamma pdf above. But for the pdf, the
parameters are known constants and the variable is x. The likelihood function
reverses the roles of the variables. Here, the sample values (the x’s) are already
observed. So they are the fixed constants. The variables are the unknown
parameters. MLE involves calculating the values of the parameters that give
the highest likelihood given the particular set of data.

The function gamfit returns the MLEs and confidence intervals for the
parameters of the gamma distribution. Here is an example using random
numbers from the gamma distribution with a =10 and b = 5.

lifetimes = gamrnd(10,5,100,1);
[phat, pci] = gamfit(lifetimes)

phat =
10.9821 4.7258

pci =

7.4001 3.1543
14.5640 6.2974

Note phat(1) = & and phat(2) = b . The MLE for parameter a is 10.98,
compared to the true value of 10. The 95% confidence interval for a goes from
7.4 to 14.6, which includes the true value.
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Similarly the MLE for parameter b is 4.7, compared to the true value of 5. The
95% confidence interval for b goes from 3.2 to 6.3, which also includes the true
value.

In our life tests we do not know the true value of a and b so it is nice to have a
confidence interval on the parameters to give a range of likely values.

Example and Plot of the Gamma Distribution. In the example the gamma pdf is
plotted with the solid line. The normal pdf has a dashed line type.

x = gaminv((0.005:0.01:0.995),100,10);
y = gampdf(x,100,10);

y1l = normpdf(x,1000,100);
plot(x,y,"-",x,y1,"-.%)

x 10°

700 800 900 1000 1100 1200 1300

Geometric Distribution
The following sections provide an overview of the geometric distribution.

Background of the Geometric Distribution. The geometric distribution is discrete,
existing only on the nonnegative integers. It is useful for modeling the runs of
consecutive successes (or failures) in repeated independent trials of a system.

The geometric distribution models the number of successes before one failure
in an independent succession of tests where each test results in success or
failure.
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Definition of the Geometric Distribution. The geometric pdf is

y = f(x|p) = pa"l g5 ()
whereq=1-p.

Example and Plot of the Geometric Distribution. Suppose the probability of a
five-year-old battery failing in cold weather is 0.03. What is the probability of
starting 25 consecutive days during a long cold snap?

1 - geocdf(25,0.03)
ans =
0.4530

The plot shows the cdf for this scenario.

X = 0:25;
y = geocdf(x,0.03);
stairs(x,y)

0 5 10 15 20 25

Hypergeometric Distribution
The following sections provide an overview of the hypergeometric distribution.

Background of the Hypergeometric Distribution. The hypergeometric distribution
models the total number of successes in a fixed size sample drawn without
replacement from a finite population.

The distribution is discrete, existing only for nonnegative integers less than the
number of samples or the number of possible successes, whichever is greater.
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The hypergeometric distribution differs from the binomial only in that the
population is finite and the sampling from the population is without
replacement.

The hypergeometric distribution has three parameters that have direct
physical interpretations. M is the size of the population. K is the number of
items with the desired characteristic in the population. n is the number of
samples drawn. Sampling “without replacement” means that once a particular
sample is chosen, it is removed from the relevant population for all subsequent
selections.

Definition of the Hypergeometric Distribution. The hypergeometric pdf is

K M-K

\x\n-x/
y = f(x|M,K,n) = v
\n/

Example and Plot of the Hypergeometric Distribution. The plot shows the cdf of an
experiment taking 20 samples from a group of 1000 where there are 50 items
of the desired type.

X = 0:10;
y = hygecdf(x,1000,50,20);
stairs(x,y)
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Lognormal Distribution
The following sections provide an overview of the lognormal distribution.

Background of the Lognormal Distribution. The normal and lognormal distributions
are closely related. If X is distributed lognormal with parameters pand 0%, then
InX is distributed normal with parameters p and 0%,

The lognormal distribution is applicable when the quantity of interest must be
positive, since InX exists only when the random variable X is positive.
Economists often model the distribution of income using a lognormal
distribution.

Definition of the Lognormal Distribution. The lognormal pdf is

—(Inx —p)*
1 20?

e
o021

Example and Plot of the Lognormal Distribution. Suppose the income of a family of
four in the United States follows a lognormal distribution with p = log(20,000)
and o2 = 1.0. Plot the income density.

X (10:1000:125010) " ;

y lognpdf(x, 10g(20000),1.0);

plot(x,y)

set(gca, "xtick",[0 30000 60000 90000 120000])

set(gca, "xticklabel " ,str2mat("0", "$30,000", "$60,000", . ..
"$90,000", "$120,000%))

y = f(x]p,0) =
X

x 10°
4

O L L n
0 $30,000 $60,000 $90,000 $120,000
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Negative Binomial Distribution

The following sections provide an overview of the negative binomial
distribution.

Background of the Negative Binomial Distribution. The geometric distribution is a
special case of the negative binomial distribution (also called the Pascal
distribution). The geometric distribution models the number of successes
before one failure in an independent succession of tests where each test results
in success or failure.

In the negative binomial distribution the number of failures is a parameter of
the distribution. The parameters are the probability of success, p, and the
number of failures, r.

Definition of the Negative Binomial Distribution. The negative binomial pdf is

-1
y = f(x|r,p) = Kr+§ )prqx|(o, 1,..)(X)

where q = 1-p.

Example and Plot of the Negative Binomial Distribution. The following commands
generate a plot of the negative binomial pdf.

X (0:10);

y = nbinpdf(x,3,0.5);
plot(x,y,"+")

set(gca, "XLim",[-0.5,10.5])
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Normal Distribution
The following sections provide an overview of the normal distribution.

Background of the Normal Distribution. The normal distribution is a two parameter
family of curves. The first parameter, |, is the mean. The second, g, is the
standard deviation. The standard normal distribution (written ®(x)) sets puto 0
and o to 1.

d(x) is functionally related to the error function, erf.
erf(x) = 2(x4/2) -1

The first use of the normal distribution was as a continuous approximation to
the binomial.

The usual justification for using the normal distribution for modeling is the
Central Limit Theorem, which states (roughly) that the sum of independent
samples from any distribution wit